Вычислить с помощью двойного интеграла
Ответы
Ответ:
кубических единиц
Примечание:
- объем цилиндрического тела с образующими, параллельными оси ограниченное снизу областью , а сверху поверхностью . Данное определение показывает геометрический смысл двойного интеграла.
Для вычисления двойного интеграла сведем его к повторному интегралу. Будем интегрировать по x, поэтому приведения в общем
виде к повторному интегралу двойного по области будет в виде:
При этом функции - функции ограничивающие область снизу и сверху соответственно.
Объяснение:
Область ограниченна поверхностями :
Область
Пересечения плоскости и плоскости x + y = 1 это кривая в плоскости .
Таким образом область ограниченна прямой , а также прямыми , .
Найдем абсциссу пересечения прямых и .
Границы интегрирования: от 0 до 1
----------------------------------------------------------------------------------------------------------
кубических единиц.