Предмет: Алгебра, автор: Reideen

Найти неопределенные интегралы

Приложения:

Ответы

Автор ответа: mathkot
2

Ответ:

1) \boxed{ \boldsymbol{ \displaystyle \int {\cos x \sin 2x \cos 4x} \, dx =\frac{\cos x}{4}+ \frac{ \cos 3x}{12}  -\frac{ \cos 5x }{20}  - \frac{ \cos 7x}{28} + C } }

2) \boxed{ \boldsymbol{\displaystyle \int {\cos^{2} 3x} \, dx =\frac{x}{2} + \frac{\sin 6x}{12} + C} }

3) \boxed{ \boldsymbol{\displaystyle  \int {\cos^{4} 3x} \, dx =  \frac{3x}{8}  +\frac{\sin 6x}{12} +  \frac{\sin 12x}{96}  + C  } }

Примечание:

Формула понижения степени:

\boxed{\cos^{2} \alpha  = \frac{1 + \cos 2\alpha }{2} }

Преобразование произведения в сумму:

\boxed{\sin x \cos y = \frac{1}{2} \bigg( \sin (x - y) +  \sin (x + y)  \bigg) }

По таблице интегралов:

\boxed{\displaystyle \int x^{n} \ dx = \frac{x^{n + 1}}{n + 1} + C; n \neq -1, x > 0}

\boxed{\displaystyle \int \sin x \ dx = -\cos x + C}

\boxed{\displaystyle \int \cos x \ dx = \sin x + C}

По свойствам интегралов:

\boxed{ \displaystyle \int \sum\limits_{i=1}^n {C_{i}f_{i}(x)} \, dx = \sum\limits_{i=1}^nC_{i} \int {f_{i}(x)} \, dx}

Объяснение:

1)

\displaystyle \int {\cos x \sin 2x \cos 4x} \, dx = \int {\frac{\cos x}{2}  \bigg( \sin (2x -4x)+\sin (2x + 4x) \bigg)} \, dx=

\displaystyle =  \frac{1}{2}\int { \cos x \bigg( \sin (-2x)+\sin (6x) \bigg)} \, dx =  \frac{1}{2} \int { \cos x \bigg(  \sin 6x -  \sin 2x \bigg)} \, dx=

\displaystyle = \frac{1}{2} \int {  \bigg(\cos x  \sin 6x -  \cos x\sin 2x \bigg)} \, dx=  \frac{1}{2}  \Bigg( \int {  \cos x  \sin 6x } \, dx -  \int {  \cos x\sin 2x} \, dx  \Bigg)=

\displaystyle =  \frac{1}{2}  \Bigg( \int {  \frac{1}{2}\bigg(   \sin(6x - x) +  \sin(6x + x)   \bigg) } \, dx -  \int {  \frac{1}{2} \bigg( \sin (2x-x) +  \sin (2x+x)   \bigg) } \, dx  \Bigg)=

\displaystyle =  \frac{1}{2}  \Bigg(\frac{1}{2} \int {  \bigg(   \sin 5x +  \sin7x   \bigg) } \, dx -   \frac{1}{2}\int {  \bigg( \sin x +  \sin 3x   \bigg) } \, dx  \Bigg)=

\displaystyle =  \frac{1}{2} \cdot \frac{1}{2}   \Bigg( \int { \sin 5x } \, dx + \int {  \sin7x  } \, dx - \bigg(  \int {   \sin x     } \, dx + \int {    \sin 3x    } \, dx \bigg)  \Bigg)=

\displaystyle =  \frac{1}{4}  \Bigg( \frac{1}{5} \int { \sin 5x } \, d(5x) + \frac{1}{7} \int {  \sin7x  } \, d(7x) - \bigg(  \int {   \sin x     } \, dx +\frac{1}{3}  \int {    \sin 3x    } \, d(3x) \bigg)  \Bigg)=

\displaystyle =  \frac{1}{4}  \Bigg( -\frac{ \cos 5x }{5}  - \frac{ \cos 7x}{7}  - \bigg( -\cos x -\frac{ \cos 3x}{3}\bigg)  \Bigg) + C=

\displaystyle =  \frac{1}{4}  \Bigg( -\frac{ \cos 5x }{5}  - \frac{ \cos 7x}{7}  +\cos x +\frac{ \cos 3x}{3}\bigg)  \Bigg) + C=

\displaystyle = \frac{\cos x}{4}+ \frac{ \cos 3x}{12}  -\frac{ \cos 5x }{20}  - \frac{ \cos 7x}{28} + C

2)

\displaystyle \int {\cos^{2} 3x} \, dx = \int {\frac{1 + \cos 6x}{2} } \, dx = \frac{1}{2} \int {\bigg(1 + \cos 6x \bigg)} \, dx =

= \displaystyle \frac{1}{2}  \Bigg(\int {1 } \, dx+\int { \cos 6x} \, dx \Bigg) = \frac{1}{2}  \Bigg(x+ \frac{1}{6} \int { \cos 6x} \, d(6x) \Bigg) =

\displaystyle= \frac{1}{2}  \Bigg(x+ \frac{\sin 6x}{6}  \Bigg) + C =  \frac{x}{2} + \frac{\sin 6x}{12} + C

3)

\displaystyle  \int {\cos^{4} 3x} \, dx = \int { (\cos^{2} 3x)^{2}} \, dx =  \int {\bigg( \frac{1 + \cos 6x}{2} \bigg)^{2} } \, dx =

\displaystyle = \int {\frac{1 + 2\cos 6x + \cos^{2} 6x}{4} } \, dx = \frac{1}{4}  \int {\bigg(1 + 2\cos 6x + \cos^{2} 6x \bigg) } \, dx =

\displaystyle = \frac{1}{4} \Bigg(  \int {1    } \, dx +   \int {2\cos 6x  } \, dx +  \int {\cos^{2} 6x   } \, dx \Bigg) =

------------------------------

а)

\displaystyle \int {1    } \, dx = x + C_{1}

б)

\displaystyle \int {2\cos 6x  } \, dx = \frac{2}{6} \int {\cos 6x  } \, d(6x) = \frac{\sin 6x}{3} + C_{2}

в)

\displaystyle \int {\cos^{2} 6x   } \, dx = \int {\frac{1 +\cos 12x}{2} } \, dx = \frac{1}{2} \int {\bigg(1 + \cos 12x \bigg)} \, dx =

= \displaystyle \frac{1}{2}  \Bigg(\int {1 } \, dx+\int { \cos 12x} \, dx \Bigg) = \frac{1}{2}  \Bigg(x + \frac{1}{12} \int { \cos 12x} \, d(12x) \Bigg) =

------------------------------

\displaystyle= \frac{1}{2}  \Bigg(x + \frac{\sin 12x}{12}  \Bigg) + C_{3} =  \frac{x}{2} + \frac{\sin 12x}{24} + C_{3}

\displaystyle = \frac{1}{4} \Bigg(  x + C_{1} +   \frac{\sin 6x}{3} + C_{2} +  \frac{x}{2} - \frac{\sin 12x}{24} + C_{3} \Bigg) =

\displaystyle = \frac{1}{4} \Bigg(  x +   \frac{\sin 6x}{3} +  \frac{x}{2} + \frac{\sin 12x}{24} \Bigg) + C = \frac{x}{4} +  \frac{\sin 6x}{12} +  \frac{x}{8} + \frac{\sin 12x}{96}  + C =

\displaystyle =   \frac{3x}{8}  +\frac{\sin 6x}{12} +  \frac{\sin 12x}{96}  + C

Похожие вопросы
Предмет: Математика, автор: bbilain54