Предмет: Алгебра, автор: sashastarikov222

Решить через дискриминант

Приложения:

Alnadya: эти примеры не решают через дискриминант, потому что есть гораздо более лёгкий способ решения.
sashastarikov222: Спасибо

Ответы

Автор ответа: Alnadya
2

Решение.

Неполные квадратные уравнения . Можно решать не находя дискриминант, а раскладывая на множители левую часть уравнения .

2.

\bf 1)\ \ \ \dfrac{1}{5}x^2-5=0\ \Big|\cdot 5\ \ \ ,\ \ \ x^2-25=0\ ,\ \ (x-5)(x+5)=0\ ,\\\\x_1=-5\ ,\ x_2=5

Ответ: меньший из корней  х= -5 .

\bf 2)\ \ \ \dfrac{1}{8}x^2-8=0\ \Big|\cdot 8\ \ \ \to \ \ \ x^2-64=0\ ,\ \ (x-8)(x+8)=0\ ,\\\\x_1=-8\ ,\ x_2=8

Ответ:   меньший из корней  х= -8 .

\bf 3)\ \ \ \dfrac{1}{6}x^2-24=0\ \Big|\cdot 6\ \ \ \to \ \ \ x^2-144=0\ ,\ \ (x-12)(x+12)=0\ ,\\\\x_1=-12\ ,\ x_2=12

Ответ:   меньший из корней  х= -12 .  

\bf 4)\ \ \ \dfrac{1}{7}x^2-28=0\ \Big|\cdot 7\ \ \ \to \ \ \ x^2-196=0\ ,\ \ (x-14)(x+14)=0\ ,\\\\x_1=-14\ ,\ x_2=14

Ответ:   меньший из корней  х= -14 .

3.

\bf 1)\ \ \ -\dfrac{2}{3}x^2+6=0\ \Big|\cdot 3\ \ \ \to \ \ \ 18-2x^2=0\ ,\ \ -2\, (x^2-9)=0\ ,\\\\-2(x-3)(x+3)=0\ ,\ \ \ x_1=-3\ ,\ x_2=3

Ответ:   больший из корней  х= 3 .

\bf 2)\ \ \ -\dfrac{3}{4}x^2+12=0\ \Big|\cdot 4\ \ \ \to \ \ \ 48-3x^2=0\ ,\ \ -3(x^2-16)=0\ ,\\\\-3(x-4)(x+4)=0\ ,\ \ \ x_1=-4\ ,\ x_2=4

Ответ:   больший из корней  х= 4 .

\bf 4)\ \ \ -\dfrac{5}{7}x^2+35=0\ \Big|\cdot 7\ \ \ \to \ \ \ 245-5x^2=0\ ,\ \ -5(x^2-49)=0\ ;\\\\-5(x-7)(x+7)=0\ ,\ \ \ \ x_1=-7\ ,\ x_2=7

Ответ:   больший из корней  х= 7 .

\bf 4)\ \ \ -\dfrac{4}{9}x^2+36=0\ \Big|\cdot 9\ \ \ \to \ \ \ 324-4x^2=0\ ,\ \ -4(x^2-81)=0\ ,\\\\-4(x-9)(x+9)=0\ ,\ \ \ x_1=-9\ ,\ x_2=9

Ответ:   больший из корней  х= 9 .

Похожие вопросы