Предмет: Геометрия,
автор: izmailgorod
Решение каждой задачи должно содержать рисунок, Дано , решение, ответ.
В ΔАВС АВ = ВС, САВ = 300, АЕ – биссектриса, ВЕ = 8 см. Найдите площадь треугольника АВС.
Ответы
Автор ответа:
1
∠АВС = 180° - 2·30° = 120°
ЕС = х, АК = КВ = у. Тогда АВ = х + 8.
ВЕ : ЕС = АВ :АС
8 : x = (x + 8) : (2y)
16y = x(x + 8)
y = x(x + 8)/16
y = BC·cos∠BCK
y = (x + 8)·√3/2
x(x + 8)/16 = (x + 8)·√3/2
x/16 = √3/2
x = 8√3
AB = BC = 8 + 8√3 (см)
Sabc = 1/2 · AB · BC · sin120°
Sabc = 1/2 · (8 + 8√3)²·√3/2 = 16√3(√3 + 1)² = 16√3(4 + 2√3) = 32√3(2 + √3) (см²)
tenanatoly40:
держи
Похожие вопросы
Предмет: Русский язык,
автор: wljmepabc
Предмет: Русский язык,
автор: 123456392
Предмет: Английский язык,
автор: girl94
Предмет: Физика,
автор: Iskander999