Предмет: Геометрия,
автор: illuminatnabite
Радиус описанной около равного раннего треугольника окруженность равен 8 см. Найдите периметр этого треугольника и радиус вписаной окружности.
Ответы
Автор ответа:
0
Ответ:
Р=24√3
r=4
Объяснение:
Радиус описанной окружности равностороннего треугольника равен 8.Найдите периметр треугольника и радиус вписаной окружности.
Центр и описанной, и вписанной окружности правильного треугольника лежит в точке пересечения медиан ( высот/биссектрис).
Медианы точкой пересечения делятся в отношении 2:1, считая от вершины. Причем радиус описанной окружности содержит 2/3, радиус вписанной 1/3 медианы ( высоты).
Следовательно, и радиусы описанной и вписанной окружности относятся так же:
R:r=2:1
R=8, ⇒ r=8:2=4
Высота данного треугольника h=8+4=12
Сторона треугольника
а=h:cos(60°)=8√3
Периметр
Р=3*8√3=24√3
Похожие вопросы
Предмет: Русский язык,
автор: aleksei120
Предмет: Русский язык,
автор: лалвлвлшешг
Предмет: Қазақ тiлi,
автор: Али0000
Предмет: Алгебра,
автор: uhnko
Предмет: Русский язык,
автор: yuliamajaeva256