5. Знайдіть 30-ий член арифметичної прогресії та суму тринадцяти перших членів,якщо а6 = 8, а8 = 10.
Ответы
Ответ:
30-й член арифметической прогрессии равен 32
Сумма тринадцати первых членов равна 117
Пошаговое объяснение:
Перевод: Найдите 30-й член арифметической прогрессии и сумму тринадцати первых членов, если а₆ = 8, а₈ = 10.
Нужно знать:
Формула для вычисления n-го члена арифметической прогрессии через первый член a₁ и разность d:
Сумма S(n) первых n членов арифметической прогрессии через первый член a₁ и разность d:
Решение. Сначала находим первый член a₁ и разность d арифметической прогрессии, зная что:
а₆ = a₁ + 5·d = 8, а₈ = a₁ + 7·d = 10.
Так как
а₈ - а₆ = 10 - 8 = 2
и
а₈ - а₆ = (a₁ + 7·d) - (a₁ + 5·d ) = 2·d,
то
2·d = 2 или d = 1.
Тогда
a₁ + 5·d = 8 или a₁ + 5·1 = 8 или a₁ = 8 -5 = 3.
Находим 30-й член арифметической прогрессии
a₃₀ = a₁ + 29·d = 3 + 29·1 = 3 + 29 = 32.
Вычислим сумму тринадцати первых членов: