Предмет: Геометрия,
автор: Anyuta567
В треугольнике АВС проведены медианы BD, AE, CF. O- точка пересечения медиан. Площадь треугольника AOD равна 2.8. Найдите площадь треугольника BFC.
Варианты ответа:
1) 36/5
2) 17/3
3) 39/4
4) 48/5
5) 42/5
Все дроби. Помогите пожалуйста, до завтра нужно срочно сделать.
Ответы
Автор ответа:
1
Так как F делит AB пополам, площадь треугольника BFC составляет половину
от площади всего треугольника ABC. Площадь треугольника ADB тоже равна
половине площади ABC, потому что D - середина AC.
Медианы треугольника в точке пересечения делятся в отношении 1:3, значит площадь треугольника AOD равна трети от площади ADB, а, следовательно и площади BFC.
SΔBFC = 3SΔAOD = 8.4.
Медианы треугольника в точке пересечения делятся в отношении 1:3, значит площадь треугольника AOD равна трети от площади ADB, а, следовательно и площади BFC.
SΔBFC = 3SΔAOD = 8.4.
Anyuta567:
спасибо большое
Похожие вопросы
Предмет: Русский язык,
автор: Аноним
Предмет: Русский язык,
автор: амин41
Предмет: Английский язык,
автор: МашаLoveМаша
Предмет: Физика,
автор: Hika180395
Предмет: Геометрия,
автор: garna78