Предмет: Алгебра, автор: akmaralkatas

В урне 3 белых и 6 черных шариков. А) из урны одновременно извлекаются два шара. Найдите вероятность того, что они будут одного цвета.
Б) Какое событие может произойти при одновременном удалении двух шариков. А-«шары одного цвета», В - «шары разных цветов»

Ответы

Автор ответа: Какжебыть
0

Ответ:

Объяснение:

Всего 3 + 6 = 9 шаров.

а) Посчитаем, сколько существует способов взять два белых шара. На каждый из трёх шаров (3 варианта) приходится другой из оставшихся двух (2 варианта). Но так как порядок вытаскивания шаров не имеет значения, то, умножив 3 на 2, мы получим способы комбинаций двух шаров, учитывая их порядок, т.е. АБ и БА будут двумя разными способами ⇒ делим на 2 и получаем один способ, это просто А и Б. Аналогично необходимо поделить на 2 произведение 3 и 2.

3 × 2 : 2 = 3 способа взять два белых шара. Проверить данный способ можно методом подбора, назовём шары А, Б и В. Мы можем взять два шара следующими способами: АБ, АВ, БВ. Их три, убедились.

Так же и с чёрными шарами.

Посчитаем, сколько существует способов взять два белых шара. На каждый из шести шаров (6 вариантов) приходится другой из оставшихся пяти (5 варианта). Но так как порядок вытаскивания шаров не имеет значения, то, умножив 6 на 5, мы получим способы комбинаций двух шаров, учитывая их порядок, т.е. АБ и БА будут двумя разными способами ⇒ делим на 2 и получаем один способ, это просто А и Б. Аналогично необходимо поделить на 2 произведение 6 и 5.

6 × 5 : 2 = 15 способов.

Узнаем общее количество способов взять два любых шара.

9 × 8 : 2 = 36 способа

Теперь узнаем вероятность того, что два шара, вытащенные из урны одновременно, одинакового цвета. Для этого две первые суммы (3 и 15) поделим на общее кол-во способов (36).

(15 + 3) / 36 = 18 / 36 = 1/2.

б) В пункте А мы узнали вероятность события А - 1/2. Так как события А и Б - несовместные (если вытащили шары одного цвета, то они не разных цветов, т.е. события А и Б не могут произойти одновременно), значит вероятность события Б = 1 - 1/2 = 1/2.

1/2 = 1/2 ⇒ события А и Б - равновозможные.

Если интересно, как получить вероятность события "шары разных цветов":

На каждый из чёрных шаров (3) приходится по 6 вариантов белых (6). То есть если взять какой-то из чёрных шаров, то будет 6 вариантов для составления комбинации с белым. Поэтому 3 умножаем на 6.

3 × 6 = 18 способов.

В значении вероятности события Б тоже можно убедиться:

Р(Б) = 18/36 = 1/2

Похожие вопросы
Предмет: Английский язык, автор: myanina
Предмет: Математика, автор: jfurjrjrjd