Предмет: Алгебра, автор: bubletea

!!! Помогите!!!!
Розв'яжіть нерівність
Комбінаторика​

Приложения:

Ответы

Автор ответа: Universalka
1

\displaystyle\bf\\A_{n-1} ^{2} +C_{n} ^{n-1} < 14\\\\\\\frac{(n-1)!}{(n-1-2)!}+\frac{n!}{(n-1)!\cdot(n-n+1)!} < 14\\\\\\\frac{(n-1)!}{(n-3)!}+\frac{n!}{(n-1)!\cdot1!} < 14\\\\\\\frac{(n-3)!\cdot(n-2)\cdot(n-1)}{(n-3)!} +\frac{(n-1)!\cdot n}{(n-1)!\cdot 1} < 14 \\\\\\(n-2)(n-1)+n < 14\\\\\\n^{2} -3n+2+n < 14\\\\\\n^{2} -2n-12 < 0

\displaystyle\bf\\n^{2}-2n-12=0\\\\D=(-2)^{2} -4\cdot(-12)=4+48=52=(2\sqrt{13} )^{2} \\\\\\n_{1} =\frac{2-2\sqrt{13} }{2} =1-\sqrt{13} \\\\\\n_{2} =\frac{2+2\sqrt{13} }{2} =1+\sqrt{13} \\\\\\n\in\Big(1-\sqrt{13}  \ , \ 1+\sqrt{13} \Big)\\\\n\in N \  \ \Rightarrow \  \ Otvet: \ n\ \in  \Big(0 \ ; \ 3\Big)

Похожие вопросы