Предмет: Геометрия,
автор: Iekr
В прямоугольном треугольнике гипотенуза и катет 3 см. Решить треугольник.
Ответы
Автор ответа:
1
Ответ:
Пусть гипотенуза равна X, тогда первый катетера равен x-3, а другой x-6. По теореме Пифагора:
x² = (x-3)2+(x-6)2
x² = x² - 6x + 9 + x² - 12x + 36 x² - 18x + 45 = 0
D = 324 - 4 × 1 × 45 = 324 - 180 = 144 = 122
x1 = (18 + 12)/2 = 30/2 = 15 x2 = (18 - 12)/2 = 6/2 = 3
х2 = 3 - не подходит, т.к. число слишком маленькое.
Значит, гипотенуза равна 15 см. Следовательно, первый катет равен 12 см, а второй 9 см.
В прямоугольном треугольнике площадь считается по формуле:
S = ab/2 = (12 × 9)/2 = 108/2 = 54 см²
Ответ: 54 см2
Похожие вопросы
Предмет: Қазақ тiлi,
автор: предок1
Предмет: Русский язык,
автор: pasha454735325
Предмет: Русский язык,
автор: 55555280
Предмет: Английский язык,
автор: vmargo19
Предмет: География,
автор: Аноним