Предмет: Геометрия, автор: vitaliy9991

В прямоугольном треугольнике биссектриса меньшего угла образует с меньшим катетом углы один из которых на 10 градусов меньше другого. Найти острые углы треугольника.

Ответы

Автор ответа: Рашель
0

Имеем треугольник АВС, где С=90 и А-меньший угол, тогда биссектриса угла А пересекает СВ в точке Е.

 

Рассмотрим углы СЕА и ВЕА , их сумма=180 , при этом ВЕА-СЕА=10 => ВЕА=10+СЕА=>

СЕА+ВЕА=СЕА+10+СЕА=180

2*СЕА=180-10

СЕА=85

 

Рассмотрим треугольник САЕ, угол С=90, Е=85 => угол САЕ=5 => что в треугольнике АВС угол А=5*2=10 (т.к. биссектриса по определению делит угол пополам), следовательно в треугольнике АВС угол В=180-90-10=80

 

Ответ: 80 и 10

 

 

 

Похожие вопросы
Предмет: Геометрия, автор: musatajd
Предмет: Французский язык, автор: samarinaa2002
Предмет: Математика, автор: Hele