Предмет: Геометрия,
автор: nikansn
Сторона равностороннего треугольника равна 10 см.
Прямые, параллельные одной из его сторон, делят данный треугольник на пять равных по площади фигур. Найдите периметр меньшего треугольника.
Ответы
Автор ответа:
5
Построим правильный треугольник АВС, тогда АВ=ВС=СА=10, пусть АС-основание. Параллельно АС проведем четыре параллельные прямые пересекающие стороны АВ и ВС. Параллельня прямая, которая ближе к вершине В пересекает стороны треуг АВ в т.К, ВС в т.М. Нам нужно найти периметр треуг КВМ. У нас получилось, что треуг АВС подобен треуг КВМ, значит соотношение сторон и периметра этих треуг будет равно к-коэффициенту подобия. А соотношение площадей этих треуг =к². Найдем площадь треуг АВС. Для этого из вершины В на сторону АС проведем высоту ВН. В правильном треугольнике высота является медианой и биссектриссой, т.к. треуг равносторонний. Тогда АН=АС/2=10/2=5 см. Найдем ВН²=АВ²-АН² ВН²=10²-5²=100-25=75 ВН=√75=5√3. Площадь треуг АВС SтрАВС=ВН*АС/2=(10*5√3)/2=25√3. Найдем SтрКВМ=SтрАВС/5 (по условию) SтрКВМ=(25√3)/5=5√3 тогда
Из подобия треуг SтрАВС:SтрКВМ=к² 25√3:5√3=5=к² к=√5. Теперь напишем соотношение периметров РтрАВС:РтрКВМ=к 30:РтрКВМ=√5 РтрКВМ=30/√5
Похожие вопросы
Предмет: Английский язык,
автор: Syoma2003
Предмет: Українська мова,
автор: alexavs1
Предмет: Қазақ тiлi,
автор: ученица245
Предмет: Английский язык,
автор: Аноним