Предмет: Геометрия,
автор: happy2020
Очень срочно, завтра зачет :с Помогите пожалуйста :*
1.Докажите, что если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.;
2.Объясните, какие утверждения называются аксиомами.
Приведите примеры аксиом;
3.Сформулируйте аксиому параллельных прямых.
^^
Ответы
Автор ответа:
0
1. Ответ на первый в скане.
2. Аксиома - математическое предложение, принимаемое без доказательства. В основе геометрии, (а по сути любой естественной науки) лежат несколько аксиом, которые приняли без доказательства, так как доказательство невозможно и они кажутся очевидными. Например, аксиома о том, что параллельные прямые не пересекаются в евклидовой геометрии лежит в основе той геометрии, которую мы изучаем в школе. 2 человека засомневались в верности этой аксиомы. Отказались от этой аксиомы и приняли аксиому, что параллельные прямые пересекаются. И построили свои геометрии, в которые евклидова входит как частный случай. Эти люди Лобачевский и Риман. Теперь есть кроме евклидовой еще геометрия Лобачевского и риманова геометрия. Вот такое дело аксиомы.
3. Аксиома параллельных прямых:
Через любую точку, не лежащую на данной прямой, можно провести прямую, параллельную данной, и притом только одну.
Но вариантов формулировки этой аксиомы видимо-невидимо.
2. Аксиома - математическое предложение, принимаемое без доказательства. В основе геометрии, (а по сути любой естественной науки) лежат несколько аксиом, которые приняли без доказательства, так как доказательство невозможно и они кажутся очевидными. Например, аксиома о том, что параллельные прямые не пересекаются в евклидовой геометрии лежит в основе той геометрии, которую мы изучаем в школе. 2 человека засомневались в верности этой аксиомы. Отказались от этой аксиомы и приняли аксиому, что параллельные прямые пересекаются. И построили свои геометрии, в которые евклидова входит как частный случай. Эти люди Лобачевский и Риман. Теперь есть кроме евклидовой еще геометрия Лобачевского и риманова геометрия. Вот такое дело аксиомы.
3. Аксиома параллельных прямых:
Через любую точку, не лежащую на данной прямой, можно провести прямую, параллельную данной, и притом только одну.
Но вариантов формулировки этой аксиомы видимо-невидимо.
Приложения:
Похожие вопросы
Предмет: Другие предметы,
автор: dilarakunakova
Предмет: Биология,
автор: alisaaskhatova2007
Предмет: Алгебра,
автор: PROMARKET88
Предмет: Математика,
автор: danilstepnov
Предмет: Химия,
автор: vladsemru