Предмет: Геометрия, автор: fedorka

На стороне  AB треугольника ABC, как на диаметре, построен круг, который пересекает стороны  AC и BC в точках D и E соответственно. Найдите угол CBD,  если площади треугольников DCE и ABC относятся как frac{1}{4}

Ответы

Автор ответа: cos20093
0

Из свойств секущей CD*CA = CE*CB следует, что CD/CB = CE/CA = (обозначим) = х;

Значит треугольники CDE и ABC подобны. Уже можно сказать, что BC = 2*CD, но для [...] точности, вспомним, что SABC = AB*BC*(sin(C)/2); SCDE = CD*CE*(sin(C)/2) = x^2*AB*BC*(sin(C)/2) = x^2*SABC, откуда х = 1/2;

Поскольку BD перпендикулярно AC, х = 1/2 = sin(CBD); угол CBD = 30 градусам.

Похожие вопросы
Предмет: Математика, автор: kazyhanaruzan000