Предмет: Алгебра, автор: Aleks6712

Спростити вираз

(\frac{1}{\sqrt{y} }+\frac{2}{\sqrt{x}-\sqrt{y} } )(\sqrt{x} -\frac{x+y}{\sqrt{x} +\sqrt{y} } )

Ответы

Автор ответа: Universalka
6

\displaystyle\bf\\1)\\\\\frac{1}{\sqrt{y} }+\frac{2}{\sqrt{x} -\sqrt{y} } =\frac{\sqrt{x} -\sqrt{y} +2\sqrt{y} }{\sqrt{y} (\sqrt{x} -\sqrt{y} )} =\frac{\sqrt{x}+\sqrt{y} }{\sqrt{y} (\sqrt{x} -\sqrt{y} )} \\\\\\2)\\\\\sqrt{x} -\frac{x+y}{\sqrt{x} +\sqrt{y} } =\frac{x+\sqrt{x} \cdot\sqrt{y} -x-y}{\sqrt{x} +\sqrt{y} } =\frac{\sqrt{x} \cdot\sqrt{y} -y}{\sqrt{x}+ \sqrt{y} } =

\displaystyle\bf\\=\frac{\sqrt{x} \cdot\sqrt{y} -(\sqrt{y} )^{2} }{\sqrt{x}+ \sqrt{y} } =\frac{\sqrt{y}\cdot(\sqrt{x} -\sqrt{y})  }{\sqrt{x} +\sqrt{y} } \\\\\\3)\\\\\frac{\sqrt{x} +\sqrt{y} }{\sqrt{y} \cdot(\sqrt{x} -\sqrt{y}) } \cdot\frac{\sqrt{y} \cdot(\sqrt{x} -\sqrt{y} )}{\sqrt{x} +\sqrt{y} } =1\\\\\\Otvet: \ 1


Aleks6712: Дякую!
muratbekovasajra643: ти мал
muratbekovasajra643: е ти кто
muratbekovasajra643: я ка заиетс
muratbekovasajra643: а ти кто
muratbekovasajra643: а я калабог
muratbekovasajra643: хаха я
Автор ответа: NNNLLL54
5

Ответ:

В скобках приводим дроби к общему знаменателю, а затем перемножаем полученные дроби .

\displaystyle \Big(\frac{1}{\sqrt{y}}+\frac{2}{\sqrt{x}-\sqrt{y}}\Big)\Big(\sqrt{x}-\frac{x+y}{\sqrt{x}+\sqrt{y}}\Big)=\\\\\\=\frac{\sqrt{x}-\sqrt{y}+2\sqrt{y}}{\sqrt{y}\, (\sqrt{x}-\sqrt{y})}\cdot \frac{x+\sqrt{xy}-x-y}{\sqrt{x}+\sqrt{y}}=\\\\\\=\frac{\sqrt{x}+\sqrt{y}}{\sqrt{y}(\sqrt{x}-\sqrt{y})}\cdot \frac{\sqrt{y}(\sqrt{x}-\sqrt{y})}{\sqrt{x}+\sqrt{y}}=\frac{\sqrt{y}}{\sqrt{y}}=1

Похожие вопросы
Предмет: Английский язык, автор: эка5
Предмет: Другие предметы, автор: litvinovaliza13