Предмет: Алгебра, автор: Reideen

Доказать методом математической индукции при натуральных n

Приложения:

Ответы

Автор ответа: mathkot
1

Ответ:

4)

\displaystyle \frac{1 \cdot 4}{2 \cdot 3} +   \frac{2 \cdot 5}{3 \cdot 4} +  \frac{3 \cdot 6}{4 \cdot 5}+ \ldots + \frac{n(n + 3)}{(n + 1)(n + 2)} = \frac{n( n+ 1)}{n + 2}

n = 1; \displaystyle \frac{1 \cdot 4}{2 \cdot 3} = \dfrac{2}{3} =\frac{1( 1+ 1)}{1 + 2} = \frac{2}{3}

n = k; \boxed{ \displaystyle \frac{1 \cdot 4}{2 \cdot 3} +   \frac{2 \cdot 5}{3 \cdot 4} +  \frac{3 \cdot 6}{4 \cdot 5}+ \ldots + \frac{k(k + 3)}{(k + 1)(k + 2)} = \frac{k( k+ 1)}{k + 2}} - пусть верно

n = k + 1;

\displaystyle \underbrace{ \frac{1 \cdot 4}{2 \cdot 3} +   \frac{2 \cdot 5}{3 \cdot 4} +  \frac{3 \cdot 6}{4 \cdot 5}+ \ldots + \frac{k(k + 3)}{(k + 1)(k + 2)}}_{\dfrac{k( k+ 1)}{k + 2}} +  \frac{(k + 1)(k + 1 + 3)}{(k + 1 + 1)(k + 1+ 2)}=

=  \dfrac{(k + 1)( k + 1+ 1)}{k + 1 + 2}

\dfrac{k( k+ 1)}{k + 2} + \dfrac{(k + 1)(k + 1 + 3)}{(k + 1 + 1)(k + 1+ 2)}  =  \dfrac{(k + 1)( k + 1+ 1)}{k + 1 + 2}

\dfrac{k( k+ 1)}{k + 2} + \dfrac{(k + 1)(k + 4)}{(k + 2)(k + 3)}  =  \dfrac{(k + 1)( k + 2)}{k + 3}

\dfrac{k( k+ 1)(k + 3)}{(k + 2)(k + 3)} + \dfrac{(k + 1)(k + 4)}{(k + 2)(k + 3)}  =  \dfrac{(k + 1)( k + 2)}{k + 3}

\dfrac{k( k+ 1)(k + 3) + (k + 1)(k + 4)}{(k + 2)(k + 3)}   =  \dfrac{(k + 1)( k + 2)}{k + 3}

\dfrac{( k+ 1)(k^{2} + 3k + k + 4)}{(k + 2)(k + 3)}   =  \dfrac{(k + 1)( k + 2)}{k + 3}

\dfrac{( k+ 1)(k(k + 3) + (k + 4))}{(k + 2)(k + 3)}   =  \dfrac{(k + 1)( k + 2)}{k + 3}

\dfrac{( k+ 1)(k^{2} + 3k + k + 4)}{(k + 2)(k + 3)}   =  \dfrac{(k + 1)( k + 2)}{k + 3}

\dfrac{( k+ 1)(k^{2} + 4k + 4)}{(k + 2)(k + 3)}   =  \dfrac{(k + 1)( k + 2)}{k + 3}

\dfrac{( k+ 1)(k + 2)^{2}}{(k + 2)(k + 3)}   =  \dfrac{(k + 1)( k + 2)}{k + 3}

\dfrac{( k+ 1)(k + 2)}{k + 3}   =  \dfrac{(k + 1)( k + 2)}{k + 3}

Так как правую и левую часть тождества

\displaystyle \frac{1 \cdot 4}{2 \cdot 3} +   \frac{2 \cdot 5}{3 \cdot 4} +  \frac{3 \cdot 6}{4 \cdot 5}+ \ldots + \frac{k(k + 3)}{(k + 1)(k + 2)} = \frac{k( k+ 1)}{k + 2}

путем равносильных преобразований удалось свести к равному выражению, тогда

\dfrac{( k+ 1)(k + 2)}{k + 3}   =  \dfrac{(k + 1)( k + 2)}{k + 3}

первоначально утверждение доказано методом математической индукции.

5)

\bigg (1 - \dfrac{4}{1} \bigg) \bigg (1 - \dfrac{4}{9} \bigg) \bigg (1 - \dfrac{4}{25} \bigg) \cdot \ldots \cdot \bigg ( 1 - \dfrac{4}{(2n - 1)^{2}} \bigg) = \dfrac{1 + 2n}{1 - 2n}

n = 1; 1 - \dfrac{4}{1} =1 -4 =-3 = \dfrac{1 + 2 \cdot 1}{1 - 2 \cdot 1} = \dfrac{1 + 2}{1 - 2} = \dfrac{3}{-1} = -3

n = k; \boxed{ \bigg (1 - \dfrac{4}{1} \bigg) \bigg (1 - \dfrac{4}{9} \bigg) \bigg (1 - \dfrac{4}{25} \bigg) \cdot \ldots \cdot \bigg ( 1 - \dfrac{4}{(2k - 1)^{2}} \bigg) = \dfrac{1 + 2k}{1 - 2k}} - пусть верно.

n = k +1; \underbrace{ \bigg (1 - \dfrac{4}{1} \bigg) \bigg (1 - \dfrac{4}{9} \bigg) \bigg (1 - \dfrac{4}{25} \bigg) \cdot \ldots  \cdot \bigg ( 1 - \dfrac{4}{(2k - 1)^{2}} \bigg)}_{\dfrac{1 + 2k}{1 - 2k}} \cdot \bigg ( 1 - \dfrac{4}{(2(k + 1) - 1)^{2}} \bigg) =

= \dfrac{1 + 2(k +1)}{1 - 2(k + 1)}

\bigg ( \dfrac{1 + 2k}{1 - 2k} \bigg )\bigg ( 1 - \dfrac{4}{(2(k + 1) - 1)^{2}} \bigg) = \dfrac{1 + 2(k +1)}{1 - 2(k + 1)}

------------------------------------------------------------------------------------------------

а)

1 + 2(k +1) = 1 + 2k + 2 = 2k + 3

б)

1 - 2(k + 1) = 1 - (2k + 2) = 1 - 2k - 2 = -2k - 1

в)

(2(k + 1) - 1)^{2} = (2k + 2 - 1)^{2} = (2k + 1)^{2}

г)

1 - \dfrac{4}{(2(k + 1) - 1)^{2}} = 1 - \dfrac{4}{(2k + 1)^{2}} = \dfrac{(2k + 1)^{2} - 4}{(2k + 1)^{2}} = \dfrac{4k^{2} + 4k + 1 - 4}{(2k + 1)^{2}} =

= \dfrac{4k^{2} + 4k - 3}{(2k + 1)^{2}};

д)

4k^{2} + 4k - 3 = 0

D= 16 - 4 \cdot 4 \cdot (-3) = 16 + 48 = 64 = 8^{2}

k_{1} = \dfrac{-4 + 8}{4 \cdot 2} = \dfrac{4}{4 \cdot 2} = \dfrac{1}{2} = 0,5

k_{2} = \dfrac{-4 - 8}{4 \cdot 2} = \dfrac{-12}{4 \cdot 2} = -\dfrac{4 \cdot 3}{4 \cdot2} = -\dfrac{ 3}{2} = -1,5

4k^{2} + 4k - 3 = 4 (k - 0,5)(k + 1,5) =2(k - 0,5) \cdot 2(k + 1,5) = (2k - 1)(2k + 3)

е)

\dfrac{4k^{2} + 4k - 3}{(2k + 1)^{2}} = \dfrac{(2k - 1)(2k + 3)}{(2k + 1)^{2}}

----------------------------------------------------------------------------------------------

\dfrac{1 + 2k}{1 - 2k} \cdot \dfrac{(2k - 1)(2k + 3)}{(2k + 1)^{2}} = \dfrac{2k + 3}{-2k - 1}

\dfrac{(2k - 1)(2k + 3)}{-(2k - 1)(2k + 1)} = -\dfrac{2k + 3}{2k + 1}

-\dfrac{2k + 3}{2k + 1}= -\dfrac{2k + 3}{2k + 1}

Так как правую и левую часть тождества

путем равносильных преобразований удалось свести к равному выражению, тогда первоначально утверждение доказано методом математической индукции.

Приложения:
Похожие вопросы
Предмет: Математика, автор: Gfdgsdgdf