Предмет: Алгебра, автор: artemstrizakov

Помогите пожалуйста, даю 80 баллов
С решением

Приложения:

people9751: решение нужно?

Ответы

Автор ответа: Ляляляля109
1

1)

а)

 \frac{15 {x}^{2} {y}^{5}  }{10 {x}^{3} {y}^{2}  }  =  \frac{3 {y}^{3} }{2x}

б)

 \frac{a {b}^{5}  -  {b}^{2} }{ {b}^{2} }  =  \frac{ {b }^{2}(a {b}^{3}  - 1) }{ {b}^{2} }  = a {b}^{3}  - 1

в)

 \frac{4 {x}^{2} - 4 {y}^{2}  }{2x - 2y}  =  \frac{(2x - 2y)(2x + 2y)}{2x - 2y}  = 2x + 2y

2)

а)

 \frac{3}{a}  +  \frac{a - 3}{a + 5 {a}^{2} }  =  \frac{3}{a}  +  \frac{a - 3}{a(1 + 5a)}  =  \frac{3(1 + 5a)}{a(1 + 5a)}  +  \frac{a - 3}{a(1 + 5a)}  =  \frac{3 + 15a + a - 3}{a(1 + 5a)}  =  \frac{16a}{a(1 + 5a)}  =  \frac{16}{1 + 5a}

б)

 \frac{2 {x}^{2} }{ {x}^{2}  -4 }  -  \frac{2x}{x + 2}  =  \frac{2 {x}^{2} }{(x - 2)(x + 2)}  -  \frac{2x}{x + 2}  =  \frac{2 {x}^{2} }{(x - 2)(x + 2)}  -  \frac{2x(x - 2)}{(x - 2)(x + 2)}  =  \frac{2 {x}^{2} - 2 {x}^{2}   + 4x}{(x - 2)(x +2 )}  = \\  \\  =   \frac{4x}{ {x}^{2}  - 4}

в)

 \frac{7a}{a - 2 {b}^{3} }  - 7 =  \frac{7a}{a - 2 {b}^{3} }  -  \frac{7(a - 2 {b}^{3}) }{a - 2 {b}^{3} }  =  \frac{7a - 7a + 14 {b}^{3} }{a - 2 {b}^{3} }  =  \frac{14 {b}^{3} }{a - 2 {b}^{3} }

3)

 \frac{9}{ {( a+ 2)}^{2} }  -  \frac{9}{ {a}^{2}  - 4}  -  \frac{9}{a + 2}  =  \frac{9}{(a + 2)(a + 2)} -  \frac{9}{(a - 2)(a + 2)}   -  \frac{9}{(a + 2)}  = \\  \\  =   \frac{9(a - 2)}{(a + 2)(a + 2)(a - 2)}  -  \frac{9(a + 2)}{(a + 2)(a + 2)(a - 2)}  -  \frac{9(a + 2)(a - 2)}{(a + 2)(a + 2)(a - 2)}  =  \\  \\  =  \frac{9a - 18}{(a + 2)( {a}^{2} - 4) }  -  \frac{9a + 18}{(a + 2)( {a}^{2} - 4) }  -  \frac{9 {a}^{2}  - 36}{(a + 2)( {a}^{2}  - 4)}  =  \frac{9a - 18 - 9a - 18 - 9 {a}^{2} + 36 }{(a + 2)( {a}^{2}  - 4)}  =  \\  \\  =  \frac{ - 9 {a}^{2} }{(a + 2)( {a}^{2} - 4) }  =  -  \frac{9}{ {a}^{3} + 2 {a }^{2} - 4a - 8  }

4)

 \frac{2 {a}^{2}  - 2 {c}^{2} +  {a}^{2}x -  {c}^{2} x  }{ {x}^{2}  - 4}  =  \frac{2( {a}^{2}  -  {c}^{2} ) + x( {a}^{2} -  {c}^{2} ) }{(x - 2)(x + 2)}  =  \frac{(x + 2)(a - c)(a + c)}{(x - 2)(x + 2)}  =  \frac{(a - c)(a + c)}{x - 2}  = \\  \\  =   \frac{(38.7 - 6.8)(38.7 + 6.8)}{1.9 - 2}  =  - 14514.5

Похожие вопросы
Предмет: Русский язык, автор: анютик105