Предмет: Алгебра, автор: xXxKattyxXx

№1 Упростить выражение:
(1-2x)(4x в квадрате +2х+1)+8х
№2 Разложить на множители:
а) 3x-3y+x в квадрате у-ху в квадрате
б) а в кубе -8
в) 36х в кубе
г) а в четвёртом степени -1
№3 Решить уравнение:
а) 5х в кубе -20х=0
б) у в кубе +3у в квадрате -у-3=0
№4 Доказать что:
а) в восьмом степени -8 в седьмом степени +8 в шестом степени делится на 57
б) (2n+5)в квадрате -4n в квадрате делится на 5 
№5 Доказать, что выражение в квадрате -10х+29 при любых значениях х приобретает лишь положительных значений.
№6 Доказать, что многочлен х в квадрате +2х+у в квадрате -4у+5 любых значениях и приобретает лишь неотъемлемых значений.

Приложения:

Ответы

Автор ответа: roizmaaan
0
Вот часть без доказательств.

№4а): (8^6)*(8^2-8)=(8^6)*(64-8)=(8^6)*57. Так как один из множителей полученного многочлена равен 57, то, очевидно, и весь многочлен кратен 57. ЧТД.

№4б): (2n+5)^2-(2n)^2=(2n+5-2n)(2n+5+2n)=5*(4n+5). Так как один из множителей полученного многочлена равен пяти, то, очевидно, и весь многочлен кратен пяти. ЧТД.

№5: приравняем многочлен нулю. Дана парабола, направленная вверх. Найдём координаты её вершины. Хв=-b/(2a), Yв=F(Xв). Вершина находится в первой четверти координатных осей, а тогда и многочлен не принимает отрицательных значений. ЧТД.

№6: квадраты, минусы и целая пятёрка при любых х и у обеспечивают положительное значение. Всё, собственно.
Приложения:
Похожие вопросы