Предмет: Геометрия, автор: edgarpetrosyan87

Периметр основания правильной четырехугольной пирамиды равен 36, а стороны представляют собой равносторонние треугольники. Найдите высоту пирамиды

Ответы

Автор ответа: kristal00119
0

Ответ:

Обозначим нашу пирамиду: АВСД - основание ( квадрат по условию), К--вершина, КО--высота пирамиды ( т. О--точка пересечения диагоналей ) и КМ---апофема , высота боковой грани

что Soch=a2=36 а-сторона основания, найдём её:

в=/36=6(см)

Sпол=Soch+Sбок=96

Sбоk=Sпол +Soch

S6=96-36=60(см2)

S6=1\2 P.L P--периметр основания , L--апофема

Росн=4 6=24

S= 112-24 L=60

12L=60

L=60:12

L=5

Из прямоугольного ДКОМ ( угол O=90град) по теореме Пифагора найдём KО=Н (высота), OM=1/2 a=3см KM=L=5

ко2-км2-ом2

КО=52-32=25-9=16

KO=-/16=4

H=4см

Похожие вопросы
Предмет: Русский язык, автор: INDI31