СРОЧНО
Сколько существует различных четырёхзначных чисел, кратных четырём и состоящих только из цифр 1, 2, 3, 4?
Ответы
Ответ:
6 комбинаций с цифрой "1" на первом месте.
Пошаговое объяснение:
1234; 1243 (двойки идут вторые)
1324; 1342 (тройки идут вторые)
1423; 1432 (четвёрки идут вторые)
6 комбинаций с цифрой "2" (на первом месте)
6 комбинаций с цифрой "3" (на первом месте)
6 комбинаций с цифрой "4" ( на первом месте)
Все цифры различны, всего 24 комбинации.
Ответ:
48
Пошаговое объяснение:
Числа делятся на 4, если две последние цифры нули или составляют число, делящееся на 4. Например, число 274593600072 делится на 4, потому что 72:4=18.
Поэтому будем исходить из того, что найдем все комбинации двузначных чисел и выберем те, которые делятся на 4.
Комбинации:
11--12--13--14
21--22--23--24
31--32--33--34
41--42--43--44
Из всех комбинаций только три делятся на 4 (они выделены жирным шрифтом).
Поскольку первые две цифры четырехзначного числа могут быть любыми, то нас устраивают все 16-ть комбинаций.
Тогда 16 комбинаций могут оканчиваться на 12, 16 комбинаций могут оканчиваться на 24 и 16 комбинаций могут оканчиваться на 32.
Всего четырехзначных чисел:
16*3=48
Проверим некоторые числа
3112:4=778
3324:4=831
и т.д.