Предмет: Математика, автор: olesyayurova85

4 ЗАДАНИЕ СРОЧНО9283920202828282828282828&:!,!,!?.?./₽&/&/@/

Приложения:

Аноним: дурачёк

Ответы

Автор ответа: Vopoxov
4

Ответ:

D(2; - 2)  \\

Пошаговое объяснение:

4.

Дано: ABCD - прямоугольник

 \small{A(-3;-2),\; B(-3;1),\;C(2;1) }\\

Найти:

 \small{D -?}

Решение.

Существует несколько вариантов решения задачи.

Привожу решение, основанное на том факте, что

• у прямоугольника диагонали равны, и в точке пересечения делятся пополам.

Обозначим координаты точек следующим образом:

 \small{A(-3;-2),\; B(-3;1),\;C(2;1) } \:  =  > \\  =  > A_x =  - 3,\; A_y =  - 2,\; \quad\quad \: \\  \:  \:  \:  \: B_x =  - 3,\;B_y =1\qquad \:  \:  \: \\   C_x = 2;  \:  \:  \: C_y = 1 \quad\quad

Пусть диагонали AC и BD пересек-ся в т. K

AC \cap BD = K

Т.к. у прямоугольника диагонали в точке пересечения делятся пополам, то =>

=> AK=KC => K - середина АС.

Если K - середина АС, то:

K = K(K_x;K_y) = K(\frac{A_x+C_x}{2};  \frac{A_y+C_y}{2}) =  \\  \small = K(\frac{ - 3+2}{2};  \frac{ - 2 + 1}{2}) =  K( - 0.5; - 0.5) \:  \:  \:

Но также K - середина BD, следовательно:

 K_{(K_x;K_y) }= K \small{{(\frac{B_x+D_x}{2};  \frac{B_y+D_y}{2})}} = K( - 0.5; - 0.5) \\

Подставив уже найденные координаты т. К, получим:

K \: { \small{ \Big(\frac{ - 3+D_x}{2};  \frac{1 +D_y }{2}\Big) }} = K{( - 0.5; - 0.5)}  \\  \\ \small  K( - 0.5; - 0.5)  \:  \: {=  > } \:  \: K_x{ = }{ - 0.5}; \:  \: K_y{ =  -} 0.5 \:  =  >  \\  \\    \small{ \: }^{1)} =  >  \:K_x =  \frac{ - 3+D_x}{2} =  - 0.5 \\  \small - 3+D_x =  - 1 \:  \:   <  =  > \:  D_x = 3 - 1 \\ \small D_x = 2 \\  \\   \:  \small { \: }^{2)} =  >  \:K_y =  \frac{ 1+D_y}{2} =  - 0.5 \\ \small 1+D_y =  - 1 \:  \:   <  =  > \:  D_y=  - 1 - 1 \\  \small D_y =  - 2 \\

Итак, мы нашли:

D_x =2; \:   \: D_y =  - 2

А значит координаты вершины D такие:

D =D(2; - 2)  \\

Похожие вопросы
Предмет: Английский язык, автор: badrex228

Akiane Kramarik is a girl from a small town in Idaho whose favourite hobby is painting. Akiane is very creative and learned how to use pastels when she^was six. She pays a lot of attention to detail and her paintings are very realistic She finished 40 paintings that sold for as much as $25,000.

In December 2001, Raynece Leader-Thomson, who was a student at Edison Middle School, had to do a science project. Her mother helped her design a game
which makes learning maths simple as well as fun! Raynece got an 'A' grade for her project so her teacher gave it to some younger students to try out. Soon after that people started to ask for their own copy of the game. So they set up a company called, 'Math Works, LLC!'

Esteban Cortezar is a young man whose love for fashion began when he was a child in Colombia. He began designing when he was ten. He used to take old clothes apart and then staple pieces back together again. Today Esteban is in charge of a growing fashion empire. He recently travelled to New York, where he showed his latest collection during fashion week. Esteban is determined to succeed and it looks like he is going the right way about it!

Chase Austin competed in his first race at the age of eight in a go-kart pieced together by his father. The 16-year-old certainly loves speed and already has a career which many people could be jealous of. This young man from Kansas is not afraid of hard work and that's why he has won so many awards.

Написать два вопроса на каждый абзац, 1 вопрос на который можно ответить да/нет и развернутый всего 8 вопросов