Предмет: Алгебра, автор: eleonaise

Демо задание 1-4
Номер 1

Приложения:

Ответы

Автор ответа: NNNLLL54
0

Ответ:

\left\{\begin{array}{l}2x-3y+z=2\\3x+2y+3z=1\\-x+2y-2z=6\end{array}\right\ \ \Rightarrow \ \ \ \ \left(\begin{array}{cccl}-1&2&-2&|\ 6\\2&-3&1&|\ 2\\3&2&3&|\ 1\end{array}\right)\sim

       1 строку * 2 +2 стр.  ;  1 стр. * 3 +3 стр.

\sim \left(\begin{array}{cccl}-1&2&-2&|\ 6\\0&1&-3&|\ 14\\0&8&-3&|\ 19\end{array}\right)\sim \ \ \ 2str\cdot (-8)+3str\ \ \ \left(\begin{array}{cccl}-1&2&-2&|\ 6\\0&1&-3&|\ 14\\0&0&21&|-93\end{array}\right)

\left\{\begin{array}{lll}-x+2y-2z=6\\\qquad \ \ y-3z=14\\\ \ \ \qquad 21z=-93\end{array}\right\ \ \ \left\{\begin{array}{lll}x=2y-2z-6\\y=14+3z\\z=-\dfrac{31}{7}\end{array}\right\ \ \left\{\begin{array}{lll}x=\dfrac{10}{7}+\dfrac{62}{7}-6=\dfrac{30}{7}\\y=14-\dfrac{93}{7}=\dfrac{5}{7}\\z=-\dfrac{31}{7}\end{array}\right

Otvet:\ \ \left\{\begin{array}{lll}x=\dfrac{30}{7}\\y=\dfrac{5}{7}\\z=-\dfrac{31}{7}\end{array}\right

Похожие вопросы
Предмет: Английский язык, автор: аска14
Предмет: Русский язык, автор: maxhasa