Предмет: Математика, автор: solncesteal

Срочно! На доске написано n единиц, между некоторыми из которых поставили знаки + и посчитали сумму. Например, если изначально было написано n = 10 единиц, то могла получиться, например, такая сумма:
1 + 11 + 11 + 111 + 1 + 1 = 136.
а) Могла ли сумма равняться 132, если n = 60?
б) Могла ли сумма равняться 132, если n = 80?
в) Чему могло равняться n, если полученная сумма чисел равна 132?

Ответы

Автор ответа: Artem112
3

А)

Заметим, что если из некоторых трех единиц составить число 111, то оставшихся 60-3=57 единиц будет достаточно, чтобы превысить требуемую сумму 132. Поэтому, число 111 в сумме использоваться не может.

Пусть в составе суммы есть х чисел "11". Тогда, для их записи было использовано 2х единиц, а это означает, что чисел "1" в сумме будет 60-2х. Составим сумму этих чисел и приравняем ее к 132:

1\cdot(60-2x)+11\cdot x=132

60-2x+11x=132

9x=72

x=8

Таким образом, если использовать 8 чисел "11" и 44 числа "1", то мы получим сумму 132.

Значит, при n=60 можно получить сумму 132.

Б)

Рассуждая аналогично, получим уравнение:

1\cdot(80-2x)+11\cdot x=132

80-2x+11x=132

9x=52

x=\dfrac{52}{9}

Так как по смыслу задачи х - это количество чисел, то эта величина не может быть дробной. Значит, при n=80 сумму 132 получить невозможно.

В)

Рассмотрим случай, когда в сумме не используется число "111".

Пусть в сумме используется a чисел "11" и b чисел "1". Тогда, общая сумма:

11a+b=132

Заметим, что выражения 132 и 11а делятся на 11. Тогда и b должно делиться на 11.

Введем обозначение:

b=11k,\ k=0;\ 1;\ ...;\ 12

Тогда:

a=\dfrac{132-11k}{11} =12-k

n_k=2\cdot(12-k)+1\cdot 11k=24-2k+11k=9k+24

При заданных значениях k получим:

n_0=24;\ n_1=33;\ n_2=42;\ n_3=51;\ n_4=60;\ n_5=69;\ n_6=78;\

n_7=87;\ n_8=96;\ n_9=105;\ n_{10}=114;\ n_{11}=123;\ n_{12}=132

Теперь рассмотрим случай, когда в сумме используется число "111". Заметим, что число "111" может использоваться в составе суммы только один раз.

Пусть, первое число равно "111". Тогда сумма остальных чисел:

132-111=21

Такую сумму можно получить либо с использованием числа "11", либо без него:

- если использовать число "11", то кроме него понадобится также 10 чисел "1";

- если не использовать число "11", то нам понадобится 21 число "1".

Таким образом, имеем следующие варианты с использованием числа 111:

n_{13}=3\cdot1+2\cdot1+1\cdot10=15

n_{14}=3\cdot1+2\cdot0+1\cdot21=24=n_2

Ответ: а) да, могла

б) нет, не могла

в) 15; 24; 33; 42; 51; 60; 69; 78; 87; 96; 105; 114; 123; 132

Похожие вопросы
Предмет: Українська мова, автор: lebedjushka
Предмет: География, автор: nastiakuro4ka