Из пунктов А и Б навстречу друг другу одновременно вышли пешеход и велосипедист, и они встретились через 50 минут. Если велосипедист проедет все АБ на 4 ч раньше, чем пешеход, то за скольео часов пройдет эту же дорогу пешеход?
Ответы
Пошаговое объяснение:
Пусть расстояние от А до В равно условной единице.
1 - расстояние АВ.
х - скорость пешехода
1/х - время пешехода на весь путь от А до В.
4х - скорость велосипедиста
Так как велосипедист проехал путь от А до В и обратно, то его расстояние равно 1 + 1 = 2, тогда
2/4х = 1/2х время велосипедиста на путь от А до В и обратно.
По условию время движения пешехода 1/х на 1 час больше времени движения велосипедиста 1/2х.
Составим уравнение:
1/х - 1/2х = 1
1 = 1· 2x
1 = 2x
х = 1 : 2
х = 1/2 = 0,5 - скорость пешехода
4 · 0,5 = 2 - скорость велосипедиста
2 + 0,5 = 2,5 - скорость сближения (т.е. расстояние, на которое они сближаются за 1 час)
А теперь всё расстояние 1 делим на скорость сближения 2,5 и получаем время до первой встречи
1 : 2,5 = 0,4 часа
0,4 часа = 60 мин : 10 · 4 = 24 мин
Ответ: через 24 минут начала движения первая встреча.