Предмет: Алгебра, автор: alinaabasova75

45. Найдите наибольшее значение выражения.
 \sin( \frac{x}{2} )  \times   { \cos( \frac{x}{2} ) }^{3}  -  \sin( \frac{x}{2} )  {}^{3 }  \times  \cos( \frac{x}{2} )

Приложения:

Ответы

Автор ответа: Universalka
1

\displaystyle\bf\\Sin\frac{x}{2}\cdot Cos^{3} \frac{x}{2} -Sin^{3}  \frac{x}{2} \cdot Cos\frac{x}{2} =Sin\frac{x}{2} \cdot Cos\frac{x}{2} \cdot\underbrace{\Big(Cos^{2} \frac{x}{2} -Sin^{2} \frac{x}{2} \Big)}_{Cosx}=\\\\\\=\frac{1}{2} \cdot \underbrace{2Sin\frac{x}{2} Cos\frac{x}{2} }_{Sinx}\cdot Cosx=\frac{1}{2} Sinx Cosx =\frac{1}{2} \cdot \frac{1}{2} \cdot \underbrace{2Sinx Cosx}_{Sin2x}=\frac{1}{4} Sin2x\\\\\\-1\leq \frac{1}{4} Sin2x\leq 1\\\\-\frac{1}{4} \leq Sin2x\leq \frac{1}{4}

\displaystyle\bf\\Otvet : \frac{1}{4}


alinaabasova75: СПАСИБО ОГРОМНОЕ♡♡♡
Universalka: Пожалуйста
Похожие вопросы