СРОЧНО ❗❗❗❗❗❗❗ ❗❗❗❗❗❗❗❗❗❗❗
Ответы
Ответ:
Объяснение:
Системы неравенств:
1. 0,6x+6)/3 -(0,2x+1)/2>1
(4-3x)/2>5
1.1. (0,6x+6)/3 -(0,2x+1)/2>1
0,2x+2-0,1x-0,5>1
0,1x>1-1,5
x₁>-0,5/0,1; x₁>-5/1; x₁>-5; x₁∈(-5; ∞)
1.2. (4-3x)/2>5
4-3x>10
3x<4-10
x₂<-6/3; x₂<-2; x₂∈(-∞; -2)
x₁∩x₂
/////////////////////////////////////
--------°----------------°------------------->x
\\\\\\\\\\\\\\\\\\\\\\\\\\
-5 -2
x∈(-5; -2)
2. (0,8x-1)/5 -1/2 ·x≤0,48
(x-5)/3 -1≤x/6
2.1. (0,8x-1)/5 -1/2 ·x≤0,48
(2(0,8x-1)-5x/10≤0,48
1,6x-2-5x≤4,8
-3,4x≤4,8+2
x₁≤6,8/(-3,4) x₁≤-68/34; x₁≤-2; x₁∈(-∞; -2]
2.2. (x-5)/3 -1≤x/6
1≥(2(x-5))/6 -x/6
2x-10-x≤6
x₂≤6+10; x₂≤16; x₂∈(-∞; 16]
x₁∩x₂
////////////////
---------------.----------------------------------.---------------->x
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
-2 16
x∈[-2; 16]
3. (0,2x-1)/7 -(0,3x)/2≤0,1
(x+1)/3 -1≤x/4
3.1. (0,2x-1)/7 -(0,3x)/2≤0,1
(2(0,2x-1)-2,1x)/14≤0,1
0,4x-2-2,1x≤1,4
-1,7x≤1,4+2
x₁≤3,4/(-1,7); x₁≤-34/17; x₁≤-2; x₁∈(-∞; -2]
3.2. (x+1)/3 -1≤x/4
1≥(4(x+1))/12 -(3x)/12
4x+4-3x≤12
x₂≤12-4; x₂≤8; x₂∈(-∞; 8]
x₁∩x₂
////////////////////
-------------------.------------------------------.----------------->x
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
-2 8
x∈[-2; 8]
4. (1,4-x)/5 -(0,6x)/3<2,28
(2x-1)/7 -1>x/3
4.1. (3(1,4-x)-3x)/15<2,28
4,2-3x-3x<34,2
6x>4,2-34,2
x₁>-30/6; x₁>-5; x₁∈(-5; ∞)
4.2. (2x-1)/7 -1>x/3
1<(3(2x-1)-7x)/21
6x-3-7x>21
-x₂>21+3; x₂<-24; x₂∈(-∞; -24)
x₁∩x₂
//////////////////////////////
---------------------°---------------------------------°---------------------------->x
\\\\\\\\\\\\\\\\\\\\\\
-24 -5
x∈∅