Предмет: Математика, автор: dbolsakov956

решите пжпжжпжпжпжпжпжпжпжпж

Приложения:

Ответы

Автор ответа: natalyabryukhova
0

Ответ:

Решение неравенства: х ∈ (-∞; -3]∪[0; 2)

Пошаговое объяснение:

Требуется решить неравенство

\displaystyle        \frac{x(x+3)}{x-2} \leq 0

ОДЗ: х - 2 ≠ 0

х ≠ 2.

Решим методом интервалов.

Приравняем числитель к нулю и найдем корни:

х (х + 3) = 0

х = 0  или х + 3 = 0

                 х = -3

Не забываем про х ≠ 2

Отметим эти точки на числовой оси и определим знак выражения на промежутках.

См. рисунок.

Решением неравенства будут промежутки, на которых выражение отрицательно, то есть где МИНУС.

Заметим, что неравенство нестрогое, поэтому точкт  (-3) и 0 входят в решение. Точка 2 выколота и в решение не входит.

Решение неравенства: х ∈ (-∞; -3]∪[0; 2)

Приложения:

ghostsoul266: Здравствуйте, если не сложно можете пожалуйста помочь с заданием по алгебре
Похожие вопросы
Предмет: Физика, автор: sorokino71bq