При решении неравенств используют равносильные преобразования. Если в неравенстве какое-нибудь слагаемое перенести из одной части в другую, изменив его знак, мы получим ... равносильное данному. h Если обе части неравенства умножить или разделить на одно и то же положительное число, мы получим неравенство, ... данному. Если обе части неравенства умножить или разделить на одно и то же отрицательное число и при этом сменить знак неравенства на противоположный, мы получим неравенство, ... данному.
помогите пожалуйста
Ответы
Ответ:
нет ответа не смогу ответить на Ваш вопрос.Затрудняюсь
Ответ:
Если в неравенстве какое-нибудь слагаемое перенести из одной части в другую, изменив его знак, мы получим:
преобразование равносильное данному.
Если обе части неравенства умножить или разделить на одно и то же положительное число... преобразование. равносильное
Если обе части неравенства умножить или разделить на одно и то же отрицательное число и при этом сменить знак неравенства на противоположный, мы получим
равносильное неравенство.
Пошаговое объяснение:
если к обеим частям неравенства прибавить одно и то же выражение, не приводящее к изменению ОДЗ исходного неравенства, то получится равносильное неравенство.
Например, замена неравенства x<7 неравенством x+(12·x−1)<7+(12·x−1) является равносильным преобразованием.
Из уже изученных равносильных преобразований неравенств следует еще одно, которое используется чаще двух предыдущих: перенос любого слагаемого из одной части неравенства в другую с противоположным знаком является равносильным преобразованием.
К примеру, оно позволяет от неравенства 3·x−5·y>12 перейти к равносильному неравенству 3·x>12+5·y.
Умножение (или деление) обеих частей неравенства на одно и то же положительное число есть равносильное преобразование неравенства. И если обе части неравенства умножить (или разделить) на одно и то же отрицательное число, изменив при этом знак неравенства на противоположный (< на >, > на <, ≤ на ≥, а ≥ на ≤), то получится равносильное неравенство. Вторая часть по той же схеме, но с учётом умножения и Деления на отрицательное число