Как доказать тиорему пифагора
Ответы
Теорема Пифагора, определение: в прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.
Гипотенуза — сторона, лежащая напротив прямого угла.
Катет — одна из двух сторон, образующих прямой угол.
Формула Теоремы Пифагора выглядит так:
a2 + b2 = c2,
где a, b — катеты, с — гипотенуза.
Из этой формулы можно вывести следующее:
a = √c2 − b2
b = √c2 − a2
c = √a2 + b2
Запоминаем
в любом прямоугольном треугольнике сумма квадратов длин двух катетов равна квадрату длины гипотенузы.
Для треугольника со сторонами a, b и c, где c — большая сторона, действуют следующие правила:
если c2 < a2 + b2, значит угол, противолежащий стороне c, является острым.
если c2 = a2 + b2, значит угол, противолежащий стороне c, является прямым.
если c2 > a2 +b2, значит угол, противолежащий стороне c, является тупым.
Записывайтесь на курсы обучения математике для школьников с 1 по 11 классы!
Теорема Пифагора: доказательство
В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.
иллюстрация доказательства теоремы Пифагора
Дано: ∆ABC, в котором ∠C = 90º.
Доказать: a2 + b2 = c2.
Пошаговое доказательство:
Проведём высоту из вершины C на гипотенузу AB, основание обозначим буквой H.
Прямоугольная фигура ∆ACH подобна ∆ABC по двум углам:
∠ACB =∠CHA = 90º,
∠A — общий.
Также прямоугольная фигура ∆CBH подобна ∆ABC:
∠ACB =∠CHB = 90º,
∠B — общий.
Введем новые обозначения: BC = a, AC = b, AB = c.
Из подобия треугольников получим: a : c = HB : a, b : c = AH : b.
Значит a2 = c * HB, b2 = c * AH.
Сложим полученные равенства:
a2 + b2 = c * HB + c * AH
a2 + b2 = c * (HB + AH)
a2 + b2 = c * AB
a2 + b2 = c * c
a2 + b2 = c2
Теорема доказана.
Обратная теорема Пифагора: доказательство
Если сумма квадратов двух сторон треугольника равна квадрату третьей стороны, то такой треугольник является прямоугольным.
Дано: ∆ABC
прямоугольный треугольник
Доказать: ∠C = 90º
Пошаговое доказательство:
Построим прямой угол с вершиной в точке C₁.
Отложим на его сторонах отрезки C₁A₁ = CA и C₁B₁ = CB.
доказательство обратной теоремы Пифагора шаг 1 и 2
Проведём отрезок A₁B₁.
Получилась фигура ∆A₁B₁C₁, в которой ∠C₁=90º.
доказательство обратной теоремы Пифагора шаг 3 и 4
В этой фигуре ∆A₁B₁C₁ применим теорему Пифагора: A₁B₁2 = A₁C₁2 + B₁C₁2.
Таким образом получится:
применение теоремы Пифагора
Значит, в фигурах треугольниках ∆ABC и ∆A₁B₁C₁:
C₁A₁ = CA и C₁B₁ = CB по результату построения,
A₁B₁ = AB по доказанному результату.
Поэтому, ∆A₁B₁C₁ = ∆ABC по трем сторонам.
Из равенства фигур следует равенство их углов: ∠C =∠C₁ = 90º.
Обратная теорема доказана.
Преподаватель Skysmart — тот, кто вам нужен
Оценки в школе станут лучше, а ребенок — более уверенным в себе
Преподаватель Skysmart — тот, кто вам нужен
Узнать больше
Решение задач
Задание 1. Дан прямоугольный треугольник ABC. Его катеты равны 6 см и 8 см. Какое значение у гипотенузы?
Как решаем:
Пусть катеты a = 6 и b = 8.
По теореме Пифагора c2 = a2 + b2.
Подставим значения a и b в формулу:
c2 = 62 + 82 = 36 + 64 = 100
c = √100 = 10.
Ответ: 10.
Задание 2. Является ли треугольник со сторонами 8 см, 9 см и 11 см прямоугольным?
Как решаем:
Выберем наибольшую сторону и проверим, выполняется ли теорема Пифагора:
112 = 82 + 92
121 ≠ 145
Ответ: треугольник не является прямоугольным