Предмет: Геометрия,
автор: Sv1narnik
Площадь прямоугольной трапеции равна 114. Найдите боковые стороны трапеции, если основания трапеции равны 12 и 7.
Ответы
Автор ответа:
4
P.S. Сорри за такой схематичный рисунок, это я в полевых условиях, а у вас, благо, есть линейка и карандаш))
S трапеции = 1/2 (AB+CD)* AC , где AB и CD - это основания, а AC - это высота.
114=1/2(12+7) * AC
AC= 144:9,5
AC=12 (в нашей трапеции АС - это ещё и меньшее боковое основание, поэтому тоже идёт в ответ)
Рассмотрим ABCD (трапеция), проведём прямую ВН параллельную АС. Заметим, что прямая ВН = АС (высоте) = 12
Рассмотрим прямоугольный треугольник ВНС:
По теореме Пифагора найдём отрезок ВD(гипотенузу)
BD^2= 12^2+5^2=169
BD=13 (в нашей трапеции BD-больше боковое основание)
Ответ: 12; 13
S трапеции = 1/2 (AB+CD)* AC , где AB и CD - это основания, а AC - это высота.
114=1/2(12+7) * AC
AC= 144:9,5
AC=12 (в нашей трапеции АС - это ещё и меньшее боковое основание, поэтому тоже идёт в ответ)
Рассмотрим ABCD (трапеция), проведём прямую ВН параллельную АС. Заметим, что прямая ВН = АС (высоте) = 12
Рассмотрим прямоугольный треугольник ВНС:
По теореме Пифагора найдём отрезок ВD(гипотенузу)
BD^2= 12^2+5^2=169
BD=13 (в нашей трапеции BD-больше боковое основание)
Ответ: 12; 13
Приложения:
Похожие вопросы
Предмет: Русский язык,
автор: elvingasimov8lass
Предмет: Английский язык,
автор: Помигите11
Предмет: Українська мова,
автор: Janestarovoida
Предмет: Алгебра,
автор: ya1234562
Предмет: Литература,
автор: MaXiMka27003