Помогите, плиз!как понять что у <0, например у квадратном неравенстве х^2-3х<0. 9 клас. Очень важно
Ответы
Решение.
Если у=х²-3х , то неравенство y<0 равносильно неравенству
х²-3х<0 . Решим его методом интервалов.
Разложим на множители левую часть неравенства, получим
х·(х-3)<0
Найдём нули функции (произведения), записанной в левой части неравенства. Это те значения х, при которых левая часть обращается в 0 . Это будет при х=0 или при х-3=0 , х=3.
Нанесём нули функции на числовую ось _____(0)_____(3)____
и подсчитаем знаки функции на полученных интервалах .
Для этого берём какую-нибудь точку из интервала и считаем знак функции .
Пусть х= -10, тогда х·(х-3)= -10·(-10-3)= -10·(-13)>0 . Ставим знак (+) в левом интервале (-∞ ; 0 ) .
Пусть х= 1, тогда х·(х-3)=1·(1-3)=1·(-2)<0 . Ставим знак (-) в среднем интервале ( 0 ; 3 ) .
Пусть х= 10, тогда х·(х-3)=10·(10-3)=10·7>0 . Ставим знак (+) в правом интервале ( 3 ; +∞ ) .
Получили + + + (0) - - - (3) + + +
Так как задано неравенство со знаком < , то смотрим, в каком промежутке записан знак минус и пишем ответ.
Ответ: х ∈ ( 0 ; 3 ) .