Предмет: Алгебра,
автор: Nurlan1th
2) The difference between the squares of the two numbers is
72. Eight times the numerically smaller number is 1 more than
5 times the other number. Find the numerically greater
number
Ответы
Автор ответа:
0
Ответ:
Let the numbers be X & Y and X > Y.
X^2 - Y^2 = 72 -->1
8*Y = 5*X +1 --> 2
Y = (5*X+1)/8
Substituting Y in above equation:
X^2-(5*X+1)/8)^2 = 72
X^2-((5*X+1)^2/64)= 72
64*X^2 - (5*X + 1)^2 = 64*72
64*X^2-(25*X^2 + 10*X + 1) = 64*72
64 X^2 - 25 X^2 - 10*X - 1 = 64*72
39*X^2 - 10*X - 1 = 64*72
39*X^2 - 10*X - 1 = 4608
39*X^2 - 10*X - 4609 = 0
Using factorisation method,
39*X^2 - 429*X+419*X-4609 = 0
39*X(X-11) + 419(X-11) = 0
(39*X+419) (X - 11) = 0
X-110, 39*X + 419 = 0
X = 11, X = -419/31
Discarding X = - 419/31 since it's a decimal number.
Therefore the greater number which is X = 11 -->
Answer.
For information:
11^2 - y^2 = 72
Y^2=12172
Y^2 = 49
Y = +/- 7
Y = -7 has to be discarded, and hence can have only one value Y = 7.
Похожие вопросы
Предмет: Английский язык,
автор: Аноним
Предмет: Русский язык,
автор: ГулназГулназ1
Предмет: Другие предметы,
автор: kulakin12001
Предмет: Математика,
автор: jeter30
Предмет: Биология,
автор: Maksy6372