Предмет: Алгебра,
автор: mariya0035
В треугольнике ABC AB = BC, угол CAB = 30 градусов, AE - биссектриса, BE = 8см. Найдите площадь треугольника ABC.
Ответы
Автор ответа:
0
АВ/АС = ВЕ/ЕС. Т. к. АВ = ВС то треугольник равнобедренный и высота ВО делит АС пополам. Примем ВО = Х, тогда АВ = 2Х и АО = кв. корень из 3Х ^2, или АО = Х корней из 3. Тогда АС = 2Х корней из 3. Примем ЕС = Y. Можно составить систему уравнений:
(ЕС + ВЕ = АВ) т. е. Y + 8 = 2Х
2Х/2Х корней из 3 = 8/Y сократив на 2Х, получим 1/ корень из 3 = 8/Y.
Решая систему, находите Y затем Х. Площадь находится перемножением АО на ВО. У меня получилось 32( 3 + 2 корней из 3). Я конечно не уверенна. Торопилась.
(ЕС + ВЕ = АВ) т. е. Y + 8 = 2Х
2Х/2Х корней из 3 = 8/Y сократив на 2Х, получим 1/ корень из 3 = 8/Y.
Решая систему, находите Y затем Х. Площадь находится перемножением АО на ВО. У меня получилось 32( 3 + 2 корней из 3). Я конечно не уверенна. Торопилась.
Похожие вопросы
Предмет: Литература,
автор: tttssse00
Предмет: История,
автор: mirbekovaperizat486
Предмет: История,
автор: Аноним
Предмет: Литература,
автор: Юля26062002