Предмет: Алгебра,
автор: Incognito599
Периметр прямоугольника равен 34 см, а его диагональ 13 см. Найти стороны прямоугольника.
решите пожалуйста уравнением, через дискрименат желательно
( без теоремы Виета и без системы уравнения )
решите пожалуйста уравнением, через дискрименат желательно
( без теоремы Виета и без системы уравнения )
Ответы
Автор ответа:
0
Ответ:
Объяснение:
34÷2=17 - две стороны прямоугольника(а ; b)
диагональ это гипотинуза= c
a+b=17
5+12=17
a^2+b^2=13^2
a^2+b^2=169
25+144=169
Через дискриминанту
Р=2a+2b
a=(P-2b)/2
b=(P-2a)/2
((P-2b)/2)^2+b^2=13^2
((34-2b)/2)((34-2b)/2)=169-b^2
1156-68b-68b+4b^2=(169-b^2)*4
4b^2-136b+1156= 676-4b^2
8b^2-136b+480=0
D=b^2-4ac=3136
x1=(-b-(sqrtD))/2a =5
x2=(-b+(sqrtD))/2a =12
Похожие вопросы
Предмет: Другие предметы,
автор: Shilova1975
Предмет: Русский язык,
автор: NeksusPRO
Предмет: Окружающий мир,
автор: Serewe1212
Предмет: История,
автор: 5058507
Предмет: Математика,
автор: Sccdg