Предмет: Алгебра, автор: kylibinkz78

СРОЧНО ПОМОГИТЕ ДАЮ 50 БАЛЛОВ ​

Приложения:

Ответы

Автор ответа: Аноним
1

Ответ:22

Объяснение:

0≤Isinx/4I≤1;

-3≤-3Isinx/4I≤0;

7-3≤7-3Isinx/4I≤7;

4≤7-3Isinx/4I≤7;

целые из множества значений 4;5;6;7. их сумма 4+5+6+7=22

Автор ответа: NNNLLL54
1

Ответ:

y=7-3\Big|sin\dfrac{x}{4}\Big|

Известно, что свои значения функция синус принимает в  промежутке [-1;1] . Тогда модуль функции  изменяется от 0 до 1,

то есть    0\leq \Big|sin\dfrac{x}{4}\Big|\leq 1  .

Умножим неравенство на 3, получим  0\leq 3\, \Big|sin\dfrac{x}{4}\Big|\leq 3\ \ \ \ \Rightarrow

-3\leq -3\Big|sin\dfrac{x}{4}\Big|\leq 0

Прибавим число 7, получим   7-3\leq 7-3\Big|sin\dfrac{x}{4}\Big|\leq 0+7

4\leq 7-3\, \Big|sin\dfrac{x}{4}\Big|\leq 7

Сумма целых чисел из множества [ 4 ; 7 ] равна   4+5+6+7=22  .

Похожие вопросы