Предмет: Алгебра,
автор: lizakutovich
найдите сумму корней квадратного уравнения х²-202х-197=0
Universalka:
202
Ответы
Автор ответа:
1
По теореме Виета:
Сумма корней равна второму коэффиценту с противоположным знаком,а произведение третьему коэффиценту
х²-202х-197=0
x1+x2= 202
Через дискриминант:
х²-202х-197=0
D= b^2-4ab
D= -202^2-4×1×(-197)= 40.804+788=41.592>0,2 корня
x1=(b+√D)/2a= (202+√41.592)/2×1= (202+2√10.398)/2= 101+√10.398
x2=(b-√D)/2a=(202-√41.592)/2×1=(202-2√10.398)/2=101-√10.398
x1+x2=
101+√10.398+101-√10.398 =101+101=202
Автор ответа:
3
х²-202х-197=0
Теорема Виета:
сумма корней равна коэффициенту "b" с противоположным знаком.
значит, х1+х2=202.
Похожие вопросы
Предмет: Русский язык,
автор: elmurod2003
Предмет: Русский язык,
автор: euroset12345212
Предмет: Русский язык,
автор: 290485Marat280489
Предмет: Биология,
автор: dasha6996290
Предмет: Английский язык,
автор: 131alena