Предмет: Алгебра, автор: banushh200

9^{a}=25\\81^{b} =5\\\\\frac{a}{b} =?



Помогите пожалуйста...Даю 50 баллов

Ответы

Автор ответа: nelle987
2

Ответ:

4

Объяснение:

Заметим, что 25 — это 5 в квадрате. Значит, если возвести обе части второго уравнения в квадрат. получится представление числа 25 через b:

(81^b)^2=5^2\\(81^b)^2=25

Раз равны правые части уравнений, то и левые тоже равны:

(81^b)^2=9^a

Представим левую часть в виде степени числа 9. Для этого воспользуемся правилом возведения степени в степень, при таком действии показатели степеней перемножаются.

(81^b)^2=81^{2b}=(9^2)^{2b}=9^{4b}

Значит,

9^{4b}=9^a

Степени с одинаковым основанием равны, если их показатели равны. Тогдa a = 4b, и искомое отношение a / b равно 4.

Похожие вопросы
Предмет: Українська мова, автор: MaksimPro3
Предмет: Қазақ тiлi, автор: 123730
Предмет: Українська мова, автор: jekaoksanape02fo