Предмет: Алгебра, автор: Poznavatel123123

100 баллов.Обчислiти визначений iнтеграл:
3 и 4 пример

Приложения:

Ответы

Автор ответа: rjcnzvjcnjdtyrj777
1

Ответ:

Цей інтеграл потрібно 2-а рази інтегрувати по частинах . Всюди в  

інтегралів межі будуть від 0  ( внизу ) до π ( вверху) . Я їх не можу  

надрукувати , нажаль :  

∫₀ⁿ ( 2x² + 4x + 7 )cos2x = ( 2x² + 4x + 7 )* 1/2 *sin2x - ∫ 1/2* sin2x (4x+4)dx =  

= 1/2 *( 2x² + 4x +7 )*sin2x - 1/2*4 ∫ ( x+ 1 )sin2xdx = 1/2 *( 2x² + 4x + 7 )*sin2x -  

- 2[( x+1)( - 1/2cos2x) + 1/2∫ cos2xdx] = 1/2 *( 2x² + 4x + 7 )*sin2x + (x+1)cos2x -  

- ∫₀ⁿ cos2xdx = [( x² +2x + 3,5 )sin2x + (x+1)cos2x - 1/2 sin2x ] │ⁿ₀=  

=( π²+2π + 3,5 )sin2π + ( π + 1 )cos2π- 1/2 sin2π - [(0²+ 2*0 + 3,5)sin(2*0) +  

+ ( 0 + 1 )cos( 2*0) - 1/2 sin( 2*0)] = ( π + 1 ) - 1 = π .

Похожие вопросы
Предмет: Математика, автор: natashenkaruba1