Предмет: Алгебра,
автор: YanaL
Докажите, что функция y= sin (x/2+3) удовлетворяет соотношению y2+(2y')2=1
Ответы
Автор ответа:
0
Производная от y = sin(x/2 + 3) есть y' = (1/2)cos(x/2 + 3).
Следовательно, y^2+(2y')^2 = sin^2(x/2 + 3) + (2(1/2)cos(x/2 + 3))^2 = sin^2(x/2 + 3) + cos^2(x/2 + 3) = 1, т.к. sin^2(z) + cos^2(z) = 1 для любого z.
Похожие вопросы
Предмет: Обществознание,
автор: Даша333555
Предмет: Русский язык,
автор: erdolekabdulaziz
Предмет: Астрономия,
автор: igorgudkoff
Предмет: Алгебра,
автор: Anechka2012
Предмет: Математика,
автор: СМИТЬ