Предмет: Математика, автор: fanartsman

Даны векторы a {1; 0; -1}, b{-2; 1; -3} и с {2; 4; 2}
Какие из них являются перпендикулярными?

Ответы

Автор ответа: bertramjeratire
1

Ответ:

Чтобы вектора были перпендикулярными должно быть выполнено условие

a_{x}b_{x}+ a_{y}b_{y}+ a_{z}b_{z}= 0

ab:

1 \times ( - 2) + 0 \times 1 + ( - 1) \times ( - 3) =  - 2 + 0 + 3 = 1

Векторы a и b не перпендикулярны

ac:

1 \times 2 + 0 \times 4 + ( - 1) \times 2 = 2 + 0 - 2 = 0

Векторы a и c перпендикулярны.

bc:

 - 2 \times 2 + 1 \times 4 + ( - 3) \times 2 =  - 4 + 4 - 6 =  - 6

Векторы b и c не перпендикулярны.

Перпендикулярны только a и c.

Похожие вопросы
Предмет: Математика, автор: Киса5555555555