Помогите, пожалуйста, 40 баллов!
Даны координаты вершин треугольника ABC
А (-4;10) В (8;1) С (12;23) найти:
1) уравнение высоты CD и ее длину
2) уравнение медианы AE и координаты точки К пересечения этой медианы с высотой CD
Ответы
Даны координаты вершин треугольника ABC
А(-4;10), В(8;1) , С(12;23) . Найти: 1) уравнение высоты CD и ее длину ;
2) уравнение медианы AE и координаты точки К , точки пересечения этой медианы с высотой CD.
Объяснение:
1) Прямые содержащие отрезки АВ и СD будут перпендикулярны , те
Уравнение прямой АВ : или 12(у-10)=-9(х+4) ,
4(у-10)=-3(х+4) , у-10= -0,75(х+4) , у= -0,75х+7.
Для уравнение прямой СD , у=4/3*х+b , найдем в используя координаты С(12;23).
⇒ b=7. Тогда уравнение высоты CD будет у=4/3*х+7.
CD=√( (12-х₂)²+(23-у₂)² ), где C(12;23), D(х₂;у₂ )
Ищем координаты D
⇒ ⇒ x=0,y=7 . D(0;7)
СD=√( (12-0)²+(23-7)² )=√(144+256)=20.
2)Если АЕ-медиана , то Е середина ВС .
Е( (8+12):2 ; (1+23):2 ) или Е(10;12)
Уравнение прямой АЕ : или 14(у-10)=2(х+4) ,
у-10=1/7*(х+4) , у-10= 1/7*х+4/7 , у=1/7*х+74/7.
Ищем координаты точки К
, |*21 , 3x+74*3=28x+21*7 ,
25x=75 , x=3 . Тогда у= 1/7*(3+74)==11 ⇒ К(3;11).