Предмет: Алгебра,
автор: lazy73245
решите уравнение с параметром
Приложения:
Ответы
Автор ответа:
1
Условие можно переформулировать так: при каких значениях параметра двойное неравенство будет выполнено при для всех . Это гарантирует, что среди точек, удовлетворяющих системе, найдутся точки с любой абсциссой из и ординатой , что и является отрезком оси .
Итак, должна выполняться система: для всех . Для первого уравнения это равносильно тому, что наибольший корень трехчлена будет не меньше нуля, а наименьший -- не больше . Тогда это будет гарантировать то, что отрезок целиком попадет в параболу. Второе выполняется тогда и только тогда, когда (в противном случае является контрпримером). Получаем систему:
(Приводить здесь решение системы не стал, поскольку муторно и не относится к идейной составляющей).
Похожие вопросы
Предмет: Русский язык,
автор: ggg129
Предмет: Русский язык,
автор: smartleo
Предмет: Английский язык,
автор: misharinz
Предмет: Английский язык,
автор: ggg8982
Предмет: Химия,
автор: ticonravova103