Предмет: Математика, автор: vkinsta13

помогите пожалуйста, кто шарит

Приложения:

Ответы

Автор ответа: lilyatomach
0

Ответ:

(4; 2\sqrt{2} ),(4; -2\sqrt{2} ),(-4; 2\sqrt{2} ),(-4; -2\sqrt{2} )

Пошаговое объяснение:

\left \{\begin{array}{l} x^{2}  - y^{2}  = 8, \\ 2x^{2} +2y^{2}  =48|:2 ; \end{array} \right.\Leftrightarrow \left \{\begin{array}{l} x^{2}  - y^{2}  = 8, \\ x^{2} +y^{2}  =24 ; \end{array} \right.\Leftrightarrow\left \{\begin{array}{l} 2x^{2}   = 32, \\ x^{2} +y^{2}  =24 ; \end{array} \right.\Leftrightarrow

\Leftrightarrow\left \{\begin{array}{l} x^{2}   = 32:2, \\ x^{2} +y^{2}  =24 ; \end{array} \right.\Leftrightarrow\left \{\begin{array}{l} x^{2}   = 16, \\ 16 +y^{2}  =24 ; \end{array} \right.\Leftrightarrow\left \{\begin{array}{l} x^{2}   = 16, \\  y^{2}  =8 ; \end{array} \right.\Leftrightarrow

\Leftrightarrow\left \{\begin{array}{l}  \left [\begin{array}{l} x  = -4 \\ x = 4;\end{array} \right., \\   \left [\begin{array}{l}y  =- \sqrt{8} , \\ y = \sqrt{8};  \end{array} \right. \end{array} \right.\Leftrightarrow \left \{\begin{array}{l}  \left [\begin{array}{l} x  = -4 \\ x = 4;\end{array} \right., \\   \left [\begin{array}{l}y  =- 2\sqrt{2} , \\ y = 2\sqrt{2};  \end{array} \right. \end{array} \right.\Leftrightarrow

\left [\begin{array}{l}  \left \{\begin{array}{l} x= 4, \\ y =2\sqrt{2};  \end{array} \right. \\  \left \{\begin{array}{l} x = 4, \\ y = -2\sqrt{2} ; \end{array} \right. \\ \left \{\begin{array}{l} x  = -4, \\ y = -2\sqrt{2} ; \end{array} \right.\\ \left \{\begin{array}{l} x  = -4, \\ y = 2\sqrt{2} . \end{array} \right.\end{array} \right.

Тогда система имеет четыре решения

1. \left \{\begin{array}{l} x  = 4, \\ y = 2\sqrt{2}  \end{array} \right.

2.  \left \{\begin{array}{l} x  = 4, \\ y = -2\sqrt{2}  \end{array} \right.

3.  \left \{\begin{array}{l} x  = - 4, \\ y = 2\sqrt{2}  \end{array} \right.

4. \left \{\begin{array}{l} x  =- 4, \\ y = -2\sqrt{2}  \end{array} \right.

Похожие вопросы