Предмет: Геометрия, автор: vladklumenko34

дві сторони трикутника дорівнюють відповідно 3√2см і 6см а кут між ними 45° Чому дорівнює третя сторона трикутника​

Ответы

Автор ответа: Аноним
0

Відповідь:

3√2

Пояснення:

За теоремою косинуса знаємо, що протилежна сторона під квадратом дорівнює сумі квадратів інших сторін та різниці подвійного добутку цих сторін на косинус кута між ними (c^2=a^2+b^2-2ab*cos(\alpha )), тому:

x^2 = (3\sqrt{2} )^2+6^2-2*6*(3\sqrt{2} )cos(\frac{\pi }{4} );\\x^2 = 18+36-6*2*3\sqrt{2} *\frac{\sqrt{2} }{2} ;\\x^2 = 54-6*3\sqrt{2} *\sqrt{2};\\x^2 = 54-6*3 *2;\\x^2 = 54-36;\\x^2=18;\\x=\sqrt{18} =\sqrt{9*2} =3\sqrt{2} ;

Отже, третя сторона дорівнює 3√2

Похожие вопросы