Известно, что LABC = — LEDC = 90° , длины отрезков BC и CD Равны. Докажите Равенство углов ВАС и DEC.
Ответы
Ответ:
чертеж на фото
Объяснение:
1. Доп. построение - соединим точки А и С, Е и С.
2. Рассмотрим треуг. АВС и ЕСД.
ВС=ДС по усл
АВ=ЕД по усл
уг АВС = уг ЕДС по усл
Значит, треуг. АВС= ЕСД по 1 признаку (по двум сторонам и углу между ними).
Из равенства треугольников следует равенство их элементов: нас интересуют стороны АС=ЕС, и углы ВАС=ДЕС
3. Рассмотрим треуг. АСЕ. Он равнобедренный, так как выше доказали, что АС=ЕС. Раз он равнобедренный, то углы при основании равны:
уг САЕ= уг СЕА
4. угол А = углу Е, так как
угол А =уг ВАС +уг САЕ
угол Е =уг ДЕС+уг СЕА
5. Рассмотрим треуг. АВЕ и ЕДА
АВ=ЕД по усл
АЕ - общая сторона
уг А = уг Е из п.4
Значит, треуг. АВЕ= ЕДА по 1 признаку (по двум сторонам и углу между ними).
Из равенства треугольников следует равенство их элементов: нас интересуют стороны ВЕ=АД, ч.т.д.