Предмет: Геометрия,
автор: azlistar88
5. Найдите углы ромба ABCD, если его диагонали AC и BD равны 4/3 ми и 4 м.
Ответы
Автор ответа:
1
Ответ: 144; 36°
Объяснение:
1. Находим сторону ромба по теореме Пифагора. Она будет равна корню квадратному из суммы квадратов половин диагоналей:
AB=√(d1/2)²+(d2/2)²=√(2/3)²+2²=√40/9=2,1м
2. Находим синус угла треугольника, образованного половинами диагоналей и боковой стороной:
sinα=(ВD/2)/АВ=2/2,1=0,95
3. Находим угол α и этот угол будет равен половине угла ВАD
α=arcsin0,95=72°
4. Находим ∠ВАD
∠ВАD=∠α*2=72*2=144°
5. Сумма углов в ромбе, прилегающих к одной стороне равна 180°,
Значит ∠АВС=180-∠ВАD=180-144=36°
Противоположные углы в ромбе равны между собой.
Похожие вопросы
Предмет: Українська мова,
автор: daria69shapoval
Предмет: Английский язык,
автор: nepochatova
Предмет: Русский язык,
автор: Vika24681565366
Предмет: Українська мова,
автор: Fghjklwert
Предмет: Алгебра,
автор: 09082004nasta