Предмет: Алгебра, автор: Xazat777

1)x²+2|x|-3=0
2)x²-5|x|+1=0​

Ответы

Автор ответа: mathkot
0

Ответ:

1) \boxed{\left[   \begin{gathered} x_{1,2} = б3  \\ x_{3,4} = б1\end {gathered}}

2) \boxed{\left[   \begin{gathered} x_{1,2} = б\sqrt{ \dfrac{23 + \sqrt{525} }{2}}  \\ x_{3,4} = б \sqrt{ \dfrac{23 - \sqrt{525} }{2}}\end {gathered}}

Объяснение:

1) x^{2}  + 2|x| - 3 = 0

2|x|  = 3 - x^{2}

(2|x|)^{2}  = (3 - x^{2})^{2}

4x^{2}  = 9 - 6x^{2}  + x^{4}

x^{4} - 10x^{2}  +  9 = 0

Замена: x^{2} = t; t\geq 0

t^{2} - 10t + 9 = 0

D = 100 - 4 \cdot 1 \cdot 9 = 100 - 36 = 64 = 8^{2}

t_{1} = \dfrac{10 + 8}{2} = \dfrac{18}{2} = 9

t_{2} = \dfrac{10 - 8}{2} = \dfrac{2}{2} = 1

\left[   \begin{gathered} x^{2} = t_{1} \\ x^{2} = t_{2} \end {gathered}  \left[   \begin{gathered} x^{2} = 9 \\ x^{2} = 1 \end {gathered} \left[   \begin{gathered} \sqrt{x^{2} }  = \sqrt{9}  \\ \sqrt{x^{2} }  = \sqrt{1}\end {gathered} \left[   \begin{gathered} |x| = 3  \\ |x| = 1\end {gathered} \left[   \begin{gathered} x_{1,2} = б3  \\ x_{3,4} = б1\end {gathered}

2) x^{2}  - 5|x| + 1 = 0

5|x|  =  x^{2} + 1

(5|x|)^{2}  = (x^{2} + 1)^{2}

25x^{2}  = x^{4} + 2x^{2} + 1

x^{4} - 23x^{2}  +  1 = 0

Замена: x^{2} = t; t\geq 0

t^{2} - 23t + 1 = 0

D = 529 - 4 \cdot 1 \cdot 1 = 529 - 4 = 525

t_{1} = \dfrac{23 + \sqrt{525} }{2}

t_{2} = \dfrac{23 - \sqrt{525} }{2}

\left[   \begin{gathered} x^{2} = t_{1} \\ x^{2} = t_{2} \end {gathered}  \left[   \begin{gathered} x^{2} =  \dfrac{23 + \sqrt{525} }{2} \\ x^{2} =  \dfrac{23 - \sqrt{525} }{2} \end {gathered} \left[   \begin{gathered} \sqrt{x^{2} }  = \sqrt{ \dfrac{23 + \sqrt{525} }{2}}  \\ \sqrt{x^{2} }  = \sqrt{ \dfrac{23 - \sqrt{525} }{2}}\end {gathered} \left[   \begin{gathered} |x| =  \sqrt{ \dfrac{23 + \sqrt{525} }{2}}  \\ |x| =  \sqrt{ \dfrac{23 - \sqrt{525} }{2}}\end {gathered} \left[   \begin{gathered} x_{1,2} = б\sqrt{ \dfrac{23 + \sqrt{525} }{2}}  \\ x_{3,4} = б \sqrt{ \dfrac{23 - \sqrt{525} }{2}}\end {gathered}

Похожие вопросы