Предмет: Алгебра,
автор: lerakravec59
Напиши уравнение окружности, которая проходит через точку 5 на оси Ox и через точку 8 на оси Oy, если известно, что центр находится на оси Ox.
Ответы
Автор ответа:
0
Ответ:
Пусть центр окружности имеет координаты О(х;0) .
Точки принадлежащие окружности имеют координаты (8;0) и (0;4). Их координаты удовлетворяют уравнению окружности:
(x –х₀)²+ (y – у₀)² = R² , где (х₀;у₀)-координаты центра .
(8-х)²+(0-0)²=R² , или 64-16х+х²=R²
(0-х)²+(4-0)²=R² или х²+16=R² . Вычтем из 1 уравнения 2. Получим :
64-16х-16=0
-16х=-48
х=3. Центр имеет координаты О(3;0).
Найдем R=√( (3-0)²+(0-4)² )=5.
(x− 3)²+y²=5²
Объяснение:
Похожие вопросы
Предмет: Английский язык,
автор: YANQPEUHD
Предмет: Русский язык,
автор: Катрин678
Предмет: Русский язык,
автор: dasha9578
Предмет: Биология,
автор: Gushina13Polina
Предмет: Химия,
автор: LizaAndrosuk