Предмет: Алгебра,
автор: AleksandrShishkin
Докажите, используя принцип математической индукции, что для любого натурального числа n верно равенство:
Приложения:
Ответы
Автор ответа:
4
Ответ:
Объяснение:
Нам необходимо доказать, что
S(n) = 1 / 1 * 2 + 1 /2 * 3 + ... + 1 /n * (n + 1) = n / (n + 1).
Проведем доказательство по индукции.
S(1) = 1 / 1 * 2 = 1/2 = 1 /(1 + 1) = 1/2.
Предположим, что утверждение верно
для любого натурального к <= n.
Тогда
S(n + 1) = 1 / 1 * 2 + 1 / 2 * 3 + ... + 1 / n * (n + 1) +
+ 1 / (n + 1) * (n + 2) = S(n) + 1 / (n + 1) * (n + 2) =
= n / (n + 1) + 1 / (n + 1) * (n + 2) =
= (n * (n + 2) + 1) / (n + 1) * (n + 2) =
= (n^2 + 2 * n + 1) / (n + 1) * (n + 2) =
= (n + 1)^2 / (n + 1) * (n + 2) = (n + 1) / (n + 2)
nikitin06vl:
Непонятно где заканчивается и начинается дробь
Похожие вопросы
Предмет: Русский язык,
автор: Кюпи
Предмет: Русский язык,
автор: Muza222002
Предмет: Русский язык,
автор: movsar101
Предмет: Математика,
автор: KaRiinee
Предмет: География,
автор: yulia10reg