Предмет: Алгебра, автор: itachi669

решите неравенства Алгебра​

Приложения:

Ответы

Автор ответа: Svetlana565
1

// Воспользуемся тригонометрической единичной окружностью (во вложении)

sin x > 0 (красный) - в верхней половине, а значит x ∈ (0 ; π).

Поскольку мы не ограничиваемся одним оборотом по окружности, а синус является периодической функцией с T = 2π, ответом для всего промежутка будет x∈(2πk ; π + 2πk), k ∈ Z.

cos x ≤ 0 (жёлтый) - в левой половине, а значит x ∈ (π/2 ; 3π/2).

Поскольку мы не ограничиваемся одним оборотом по окружности, а косинус является периодической функцией с T = 2π, ответом для всего промежутка будет x∈(π/2 + 2πk ; 3π/2 + 2πk), k ∈ Z.

tg x ≤ 0 (зелёный) - во второй и четвёртой четвертях, а значит x ∈ (π/2 ; π] ∪ (3π/2 ; 2π].

Поскольку мы не ограничиваемся одним оборотом по окружности, а тангенс является периодической функцией с T = π, ответом для всего промежутка будет x ∈ (π/2 + πk ; π + πk].

ctg x > 0 (голубой) - в первой и третьей четвертях, а значит x ∈ (0 ; π/2) ∪ (π ; 3π/2).

Поскольку мы не ограничиваемся одним оборотом по окружности, а котангенс является периодической функцией с T = π, ответом для всего промежутка будет x ∈ (πk ; π/2 + πk).

Приложения:

itachi669: спс чел
Похожие вопросы
Предмет: Английский язык, автор: nightmare13